„Harmonikus rezgések vizsgálata” változatai közötti eltérés
269. sor: | 269. sor: | ||
{{fig2|Kenyszerrezges.png|fig:6|6. ábra}} | {{fig2|Kenyszerrezges.png|fig:6|6. ábra}} | ||
− | A kísérleti berendezés az [[#fig:6|6. ábrán]] láthatóhoz hasonló saját gyártású mérőeszköz. Az alul elhelyezkedő elektronikai egységben található a meghajtó villanymotor és egy optikai érzékelő, mellyel a meghajtás frekkvenciája mérhető, az egység első lapján találhatók az elektromos csatlakozók (motortáp, optikai értzékelő tápja, illetve jelkimenete), | + | A kísérleti berendezés az [[#fig:6|6. ábrán]] láthatóhoz hasonló saját gyártású mérőeszköz. Az alul elhelyezkedő elektronikai egységben található a meghajtó villanymotor és egy optikai érzékelő, mellyel a meghajtás frekkvenciája mérhető, az egység első lapján találhatók az elektromos csatlakozók (motortáp, optikai értzékelő tápja, illetve jelkimenete), illetve a kényszererőt létrehozó excenter. A kényszererő amplitúdója az amplitúdórúd helyzetének változtatásával szabályozható, ami a kényszert kifejtő zsinór rögzítési pontja és az excenter középpontja közötti távolságot befolyásolja [[#fig:7|(7. ábra)]]. A kényszert továbbító zsinór a tartóoszlop tetején található két csiga vájatain áthaladva egy hurokkal kapcsolódik a vizsgálandó rugó egyik végéhez. A másik véghez a skálával ellátott mérőrúd és a hozzá erősített ún. csillapító rúd csatlakozik. E két rúd alkotja a rezgőmozgást végző „alaptömeget”, melynek értéke 50 g. |
A mérőkészlethez tartozik két 50 g tömegű rézkorong is. A korongokat a mérőrudat és csillapitórudat összekötő csavarmenetre lehet felerősíteni. A tartóoszlop középmagasságánál látható a rúdvezető, mérőrudat a rúdvezető téglalap alakú nyílásán kell átvezetni úgy, hogy a mérőrúd egyik oldala sem ér hozzá a rúdvezető nyílásának falához ([[#fig:8|8. ábra]]). A nem jó a beállítás a 9. ábrán látható „b” vagy „c” esetben fordul elő. A „b” esetet az elektronika doboz változtatható magasságú lábainak megfelelő állításával korrigálhatjuk (vízszintezés). A „c” eset a mérőrúd felfüggesztésével (elcsavarásával)javítható. | A mérőkészlethez tartozik két 50 g tömegű rézkorong is. A korongokat a mérőrudat és csillapitórudat összekötő csavarmenetre lehet felerősíteni. A tartóoszlop középmagasságánál látható a rúdvezető, mérőrudat a rúdvezető téglalap alakú nyílásán kell átvezetni úgy, hogy a mérőrúd egyik oldala sem ér hozzá a rúdvezető nyílásának falához ([[#fig:8|8. ábra]]). A nem jó a beállítás a 9. ábrán látható „b” vagy „c” esetben fordul elő. A „b” esetet az elektronika doboz változtatható magasságú lábainak megfelelő állításával korrigálhatjuk (vízszintezés). A „c” eset a mérőrúd felfüggesztésével (elcsavarásával)javítható. |
A lap 2022. október 6., 20:46-kori változata
A mérés célja:
- elmélyíteni a hallgatók harmonikus rezgésekről szóló ismereteit,
- megtapasztalni a mechanikai és az elektromos rezgések közötti analógiát,
- megismerkedni a váltóáramú mérésekkel és a komplex jelöléssel,
- valamint egyszerű szűrőkapcsolások tulajdonságaival
Ennek érdekében:
- a mechanikai rezgések leírásán keresztül áttekintjük a harmonikus rezgések elméletét,
- megismerjük a különböző áramköri elemek váltóáramú viselkedését,
- áttekintjük a komlex jelölést
- megismerkedünk néhány egyszerű szűrőelrendezéssel,
- megvizsgáljuk a mechanikai rezgéseket,
- méréseket végzünk alul- és felüláteresztő szűrőkkel,
- megvizsgáljuk a feszültségviszonyokat soros RLC körökben,
- megfigyeljük az analógiát a soros RLC és a mechanikai rezgések között.
Tartalomjegyzék |
Elméleti összefoglaló
A harmonikus rezgés alapvető fizikai jelenség. Vibrációk, oszcillációk harmonikus rezgéssel modellezhetők, ha az amplitúdók elég kicsinyek. A harmonikus mozgás differenciálegyenlete nem csupán a klasszikus fizikában (mechanika, villamosságtan), de a kvantumfizikában, a szilárdtestfizikában és az optikában is gyakran előfordul. A harmonikus rezgés tulajdonságait a mechanikai rezgések példáján keresztül tárgyaljuk, majd megmutatjuk a soros RLC körökben megfigyelhető elektromos rezgések és a mechanikai rezgések közötti analógiát. Végül pedig bevezetjük a komplex jelölést és megvizsgálunk néhány egyszerű szűrőelrendezést.
Harmonikus mechanikai rezgések leírása
Csillapítatlan mechanikai rezgések
Ha egy tömegű anyagi pontra a kitéréssel arányos, rugalmas erő hat, akkor a mozgásegyenlet
alakú, ahol a rugóállandó, a tömegpont kitérése az egyensúlyi helyzetből, a tömeg, és a gyorsulás. A mozgásegyenlet megoldása
ahol a (kitérési) amplitúdó, a időpillanathoz tartozó fázis (mindkettőt a kezdeti feltételek határozzák meg),
a csillapítatlan rezgő rendszer körfrekvenciája. (, ahol a megfelelő frekvencia.)
A harmonikus rezgőmozgás sebessége
ahol a maximális sebesség, az ún. sebességamplitúdó.
Csillapodó rezgések
A csillapodást okozó erők gyakran (jó közelítéssel) a sebességgel arányosak: , ahol a csillapítás erősségére jellemző mennyiség. Ekkor a tömegpont mozgásegyenlete:
ami a csillapítási tényező bevezetésével és definíciójának felhasználásával az alábbi alakra hozható:
A differenciálegyenlet megoldása esetén időben csökkenő amplitúdójú lengéseket eredményez:
A rezgés körfrekvenciája
Az amplitúdóváltozás jellemzésére különböző mennyiségeket használnak. A csillapodási hányados két, azonos irányban egymás után következő amplitúdó hányadosa
ahol . Használatos még a K csillapodási hányados logaritmusa, az ún. logaritmikus dekrementum is:
Kényszerrezgések
Egy tömegre pl. motor és excenter segítségével időben periodikusan változó erőt alkalmazva egy átmeneti időszak után időben állandósult rezgés alakul ki, melynek frekvenciája megegyezik a kényszerítő erő frekvenciájával, míg amplitúdója függ az erőtől, a rugóállandótól, a tömegtől, a csillapítástól valamint a gerjesztő frekvenciától. Az anyagi pont mozgásegyenlete ekkor:
A korábban bevezetett jelöléseket alkalmazva másodrendű lineáris, inhomogén differenciálegyenletet kapunk:
ahol a kényszererő maximális értéke. Az egyenlet megoldása:
melynek második tagja írja le az állandósult állapotot. Az állandósult állapot amplitúdója:
melynek maximuma van az
körfrekvenciánál. A fázisállandó nem az időmérés kezdetétől függ, hanem a kényszerítő erő fázisától való eltérés, ennek tangense:
Az amplitúdóhoz hasonlóan megadhatjuk a sebességamplitúdó kifejezését is:
melynek maximuma – ellentétben a kitérési amplitúdó maximumával – éppen -nál van, ahol
A kényszerrezgés energiaviszonyainak jellemezésére az egy periódus alatt disszipált energia és a rendszerben tárolt átlagos energia hányadosával arányos jósági tényezőt használjuk
Váltakozó áramú kapcsolások
Áramköri elemek áram- és feszültségviszonyai
Ohmos ellenállás
Az ellenálláson eső feszültséget az
összefüggés írja le. Szinuszos gerjesztés [] esetén
azaz az ohmos ellenálláson a feszültség és az áram azonos fázisban van.
Tekercs
A tekercsben indukálódó feszültséget az
egyenlet írja le. Szinuszos gerjesztés [] esetén
tehát a tekercsben fellépő feszültség 90°-ot siet az átfolyó áramhoz képest.
Kondenzátor
A kondenzátoron átfolyó áram időfüggését az alábbi egyenlet írja le:
Szinuszos gerjesztés [] esetén:
azaz a kondenzátor feszültsége 90°-kal késik az áramhoz képest.
Soros rezgőkör - a mechanikai kényszerrezgés elektromos megfelelője
Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (1. ábra). Az alábbiakban láthatjuk, hogy ez az áramkör a korábban ismertetett kényszerrezgés elektromos megfelelője, amennyiben a tömegpont kitérését megfeleltetjük a kondenzátor töltésének, a rugóállandót a kondenzátor kapacitásának, a tömegpont tömegét a tekercs induktivitásának és a csillapítást az ellenállásnak. Ha az RLC körben a kondenzátort feltöltenénk, majd a bemenetet rövidre zárnánk, akkor egy csillapodó rezgést figyelhetnénk meg. A nagy frekvencia és a gyors csillapodás miatt azonban ezt nehezebb megfigyelni, mint egy kitérített, és magára hagyott mechanikai rezgő rendszert. Ha a bemenetre szinuszos gerjesztő feszültséget kapcsolunk, akkor viszont a kényszerrezgéssel teljesen analóg viselkedést figyelhetünk meg.
Viszgáljuk meg a rezgőkör differenciálegyenletét a kondenzátor időfüggő töltésére () felírva, amikor a rezgőkörre feszültséget kapcsolunk:
Vegyük észre, hogy ez a differenciálegyenlet és jelöléssel a kényszerrezgést leíró differenciálegyenlettel teljesen analóg egyenletet eredményez. Ennek következtében az általános megoldás is teljesen analóg: traniens és állandósult tagokat tartalmaz.
Esetünkben a tranziens tag hamar elhal, és az állandósult tagot tanulmányozhatjuk. Az amplitúdó itt a kondenzátor töltése, de számunkra sokkal érdekesebb ennek deriváltja, a körben folyó áramerősség. Ez tehát az analógia alapján a mechanikai rezgés sebességrezonanciájával egyezik meg:
Ha behelyettesítjük és értékét, akkor
Látható, hogy a rezgőkörben folyó áramnak esetén az
körfrekvencián maximuma van. A jelenséget rezonanciának, -t rezonancia-körfrekvenciának hívják. Ezen a körfrekvencián áramrezonancia alakul ki.
Ez az áram – kis veszteségi ellenállást feltételezve – igen nagy feszültségeket hozhat létre a kondenzátoron és a tekercsen. Azonban ezek a feszültségek egymáshoz viszonyítva 180°-os fázisban vannak, abszolút értékük pedig megegyezik (hiszen azonos áram folyik át rajtuk), így egymást kiegyenlítik.
Megjegyzés: A kondenzátoron és a tekercsen eső feszültségnek nem pontosan az rezonanciafrekvencián van maximuma - hasonlóan a mechanikai kényszerrezgés amplitúdórezonanciájához.
Komplex jelölés
Szinuszos gerjesztés esetén, állandósult állapotban minden áram- és feszültségfüggvény azonos körfrekvenciával változik. Az egymáshoz képesti fáziskülönbségeket ilyenkor fazorábrával szemléltethetjük. Az 2. ábrán egy soros RLC-kör (részletesen lásd később) fazorábrája látható. Az áram - a soros kapcsolás miatt - mindhárom elemen ugyanakkora, a feszültségek pedig ehhez viszonyítva sietnek, fázisban vannak, illetve késnek.
Az áramkörre kapcsolt feszültség a három, sorbakapcsolt feszültséget jelölő fazor vektori eredője.
A fazorokat felfoghatjuk komlex számokként is. Így az egyes áram és feszültségjeleket egy-egy komplex szám jelöli. A fazorokhoz hasonlóan a komplex szám abszolút értéke a jel nagyságát (csúcsértékét), a komplex szám arkusza pedig a jel (a kiválasztott fázishelyzethez viszonyított) fázisát adja meg.
Figyelem! Mivel a villamos hálózatoknál az áram pillanatértékét jelöli, a komplex egység szokásos jelölése itt !
Az 2. ábrán látható fazorábrán szereplő jeleknek megfelelő komplex mennyiségek:
Ekkor az eredő (komplex) feszültséget nem csak megszerkeszthetjük, hanem egyszerű komplex algebrával ki is számolhatjuk:
Az eredő feszültség nagysága (csúcsértéke) a komplex érték abszolút értéke:
ahol az eredő ellenállás.
Az eredő feszültség fázisa a komplex feszültség arkusza:
A komplex áram és feszültség alapján azonban közvetlenül is fel tudjuk írni az áram és a feszültség időfüggvényét:
Ha az 2. ábrán látható fazorokat leíró komplex feszültségeket elosztjuk az áramerősség nagyságával, akkor ellenállás dimenziójú komplex mennyiségeket kapunk:
A komplex ellenállásokkal ugyanúgy számolhatunk egy váltóáramú körben, mint az ohmos ellenállásokkal egyenáramú hálózatok esetében.
A mi esetünkben a soros kapcsolás miatt az eredő (komplex) ellenállás az egyes (komplex) ellenállások összege:
A komplex jelölésmóddal bármely áramköri elem leírása olyan, mintha egy ohmos ellenállás lenne:
A komplex ellenállás abszolút értéke a skalár ellenállás értéket adja, míg arkusza azt mutatja meg, hogy az adott áramköri elem mennyivel tolja el a fázist.
Egyszerű áramkörök leírása komplex jelöléssel
A komplex leírásmód előnyének szemléltetése céljából az alábbiakban megvizsgálunk néhány negyszerű áramkört.
Szűrő áramkörök
Szűrők segítségével egy különböző frekvenciájú rezgésekből álló elektromos jelből ki lehet szűrni bizonyos frekvenciatartományokat. A legegyszerűbb elsőrendű szűrők egy ellenállást és egy kondenzátort/tekercset tartalmaznak és a feszültségosztás elvén működnek, melyet a komplex jelölést felhasználva egyszerűen az egyenáramú áramkörökben jól ismert feszültségosztó képlettel leírhatunk komplex ellenállások használatával. Ilyen szűrőkre láthatunk példát az 4/a és 4/b ábrákon. A kapcsolások feszültségviszonyai pedig az alábbi képletekkel írhatók le (A vastag betűs mennyiségek komplex változók, a képzetes egység. Ugyanakkor mérni csak valós mennyiségeket lehet, azaz a komplex mennyiségek abszolút értékét!):
A kimeneti és bemeneti feszültségek hányadosa, a hálózatra jellemző, frekvenciafüggő kifejezés, melyeket megvizsgálva látható, hogy formailag azonosak, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig vagy , a kifejezések értéke 1; ha vagy , a hányados értéke szerint csökken. Ez azt jelenti, hogy adott , és esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat aluláteresztő szűrőknek nevezik.
Könnyen belátható továbbá az is, hogy ugyanezeket az elrendezéseket használva felüláteresztő szűrőket is megvalósíthatunk, amennyiben a kondenzátoron (4/a) vagy ellenálláson (4/b) eső feszültség helyett a kapcsolás másik áramköri elemén (ellenállás/tekercs) eső feszültséget tekintjük kimeneti feszültségnek.
Rezgőkörök
A Komplex jelölést bemutató fejezetben egy soros rezgőkör állandósult állapotát írtuk fel a komplex jelölés használatával (fontos megjegyezni, hogy a tranzienseket ebben a leírásban nem lehet vizsgálni), ahol a hálózat eredő impedanciájára:
az impedancia abszolút értékére és fázisszögére pedig:
összefüggéseket kaptuk.
Így a körben folyó áram (azaz az ellenálláson eső feszültség és az ellenállás hányadosa):
A komplex felírásmód alkalmazásával hasonlóan egyszerűen megkaphatjuk egy párhuzamos LC rezgőkör jellemzőit is, melyek az alábbiak:
A körben folyó áramot leíró képlet elemzéséből megállapítható, hogy a párhuzamos RLC kör esetén kis és nagy értékeknél kapunk maximális áramot és az áramnak mimimuma van függvényében az helyen.
A mechanikai rezgések vizsgálatához használt kísérleti berendezés leírása
A kísérleti berendezés az 6. ábrán láthatóhoz hasonló saját gyártású mérőeszköz. Az alul elhelyezkedő elektronikai egységben található a meghajtó villanymotor és egy optikai érzékelő, mellyel a meghajtás frekkvenciája mérhető, az egység első lapján találhatók az elektromos csatlakozók (motortáp, optikai értzékelő tápja, illetve jelkimenete), illetve a kényszererőt létrehozó excenter. A kényszererő amplitúdója az amplitúdórúd helyzetének változtatásával szabályozható, ami a kényszert kifejtő zsinór rögzítési pontja és az excenter középpontja közötti távolságot befolyásolja (7. ábra). A kényszert továbbító zsinór a tartóoszlop tetején található két csiga vájatain áthaladva egy hurokkal kapcsolódik a vizsgálandó rugó egyik végéhez. A másik véghez a skálával ellátott mérőrúd és a hozzá erősített ún. csillapító rúd csatlakozik. E két rúd alkotja a rezgőmozgást végző „alaptömeget”, melynek értéke 50 g.
A mérőkészlethez tartozik két 50 g tömegű rézkorong is. A korongokat a mérőrudat és csillapitórudat összekötő csavarmenetre lehet felerősíteni. A tartóoszlop középmagasságánál látható a rúdvezető, mérőrudat a rúdvezető téglalap alakú nyílásán kell átvezetni úgy, hogy a mérőrúd egyik oldala sem ér hozzá a rúdvezető nyílásának falához (8. ábra). A nem jó a beállítás a 9. ábrán látható „b” vagy „c” esetben fordul elő. A „b” esetet az elektronika doboz változtatható magasságú lábainak megfelelő állításával korrigálhatjuk (vízszintezés). A „c” eset a mérőrúd felfüggesztésével (elcsavarásával)javítható.
Helyes beállítás esetén a rezgés csillapodása – melyet a légellenállás ill. a berendezés egyes elemei között fellépő súrlódás okoz – igen kicsi. Ezért a csillapítás változtatása (növelése) céljából a tartórúdra egy olyan mágnespárt szerelhetünk fel, melynek pofái között a távolság változtatható. Ezen mágnespofák között mozog az alumíniumból készült csillapítórúd. A mágneses tér hatására a mozgó fémrúdban örvényáramok keletkeznek, melyek Joule-hőjének disszipációja okozza a rendszer csillapodását. A mágnespofák közötti távolság csökkentésével a mágneses térerősség növelhető, azaz a disszipáció, vagyis a csillapítás fokozható.
A motor egy szabályozható tápegységgel kerül meghajtásra, és a feszültség változtatásával érhetjük el a meghajtás frekvenciájának változását. A mérőrúd pozícióját az idő függvényében (így a rezgés amplitúdóját és frekvenciáját is) egy Vernier GO! Motion ultrahangos távolságmérővel méri a Logger Lite nevű program segítségével (ha saját laptopot szeretne használni a méréshez, akkor telepítse a programot). A meghajtás frekvenciáját mérő optikai jeladó feszülségjele szintén rögzíthető a Logger Lite programban. Az optikai jeladó használatához egy 5V-os DC tápfeszültséget kell kapcsolni a tápbemenetre, melyet szintén a rendelkezésre álló tápegyből tud kivenni.
Mérési feladatok
- A mérés elvégzéséhez és a mérési napló elkészítéséhez a dőlt betűs részekben adunk segítséget.
FELADATOK ELSŐ ALKALOMMAL
A méréshez rendelkezésre álló eszközök
1. A rugóállandó mérése
Állítsa be a zsinór hosszát úgy, hogy a mérőrúd alja körülbelül a rúdvezető alsó széléhez essen! Erősítse az egyik 50 g-os rézsúlyt a mérőrúd és a csillapítórúd közé! Mérje le a rugó sztatikus megnyúlását! Ezután helyezze fel a második rézsúlyt is, és mérje meg az újabb megnyúlást! Számítsa ki a rugó rugóállandóját!
- A méréshez használja a Logger Lite szoftvert és az ultrahangos távolságmérőt!
- A Logger Lite szoftver beállításához kérje a mérésvezető segítségét!
2. Csillapítatlan rendszer lengésideje
Szabályozza be a készüléket!
- Nagyon fontos, hogy a mérőrúd ne érjen a rúdvezető egyik falához se (lásd az előző pontban)!
Ehhez a méréshez szerelje le a csillapító mágnespofákat! Húzza a mérőrudat kb. 5 cm-rel az egyensúlyi helyzete alá, és engedje el! Indítsa el a Logger Lite programban a mintavételezést és rögzítsen 5-10 periódust! Az "Export As" menüpontot használva mentse el az adatokat és töltse be a Matlab-ba, majd határozza meg a rezgés periódusidejét. A mérést üres mérőrúddal, majd 50 és 100 g-os terhelésekkel is végezze el!
- A mért adatok Matlab-ba való betöltésére (és akár a görbeillesztésre) célszerű egy függvényt készítenie, mert a későbbi méréseknél szintén el kell végezni a betöltést és illesztést.
- Az eredményeket foglalja táblázatba és vesse össze az elmélet alapján kiszámolt értékekkel!
3. Kényszerrezgés amplitúdójának és sebességamplitúdójának vizsgálata a kényszerítő frekvencia függvényében
A méréseket két különböző csillapítás esetén, mérőrúd + 50 g tömeggel végezze el! Szerelje vissza a csillapító mágnespofákat! A kis csillapításhoz a csillapító mágnespofákat egymástól kb. 2 cm-re állítsa be! A nagy csillapításhoz tekerje a mágnespofákat a lehető legközelebb, de csak annyira, hogy ne érjenek hozzá a csillapítórúdhoz! Ekkor mérje meg és jegyezze fel a mágnespofák távolságát!
Gondosan állítsa be a mérőrúd helyzetét, majd a motor feszültségének növelésével indítsa el a kényszerrezgést! A meghajtás elindítását célszerű kézzel segíteni, óvatosan lökje meg a meghajtókereket az (előlap felől nézve) óramutató járásával ellentétes irányba. A mérés során lassan (fokozatosan) növelje a frekvenciát a feszültség növelésével, és keresse meg az rezonanciafrekvenciát, ahol az amplitúdó maximális!
- NE HASZNÁLJON TÚL KICSI CSILLAPÍTÁST (túl távoli mágnespofák), mert a rezonanciafrekvencián az amplitúdó túl nagy lehet, ami károsíthatja a berendezést, vagy balesetet okozhat!
- A rezonanciafrekvencia – különösen nagy csillapítás esetében – eltér a sajátfrekvenciától.
- Amennyiben a rezgések amplitúdója túl nagy vagy túl kicsi lenne, úgy kapcsolja ki a készüléket és csökkentse, illetve növelje a kényszererő amplitúdóját, majd ellenőrizze a kitérést a rezonanciafrekvenciánál!
Amennyiben mindent rendben talál, végezze el újra a frekvencia hangolását és időről-időre álljon meg és várja meg az állandósult állapotot! A rezonanciafrekvenciánál 1 Hz-cel kisebb és 1 Hz-cel nagyobb frekvenciák közötti intervallumban mérjen kb. 0,1 Hz-enként (és a rezonancia frekvencia közelében ennél sűrűbben is)! Illesztéssel határozza meg az amplitúdókat és a frekvenciákat! Ábrázolja a különböző csillapítással felvett görbéket közös diagrammon! Adja meg minden esetben értékét!
- Célszerű már a frekvencia hangolása közben elindítani a mintavételezést és a számítógépen figyelni mikor ér véget a tranziens viselkedés.
- Az adott frekvenciához tartozó állandósult állapotban történő méréshez indítson új mintavételezést és vegyen fel 10-20 periódust! Ennek a mérési fájlnak a automatizált betöltése és illesztáse egyszerűbb, mert nem szükséges az adatok levágása.
- Rögzítse a motor meghajtófeszültségének értékét is a különböző frekvenciáknál, a későbbi méréseknél segítségére lehet.
- Először végezze el a mérést nagyobb frekvencia lépésekben, majd ha szükséges, akkor finomítsa a felbontást!
A korábban megmért görbék valamennyi pontjánál (a kitérési amplitúdó és frekvencia ismeretében) számítsa ki a sebeségamplitúdó értékeket! Foglalja táblázatba és ábrázolja diagrammon a sebességamplitúdó – körfrekvencia görbéket!
- A különböző csillapítással felvett görbéket most is közös diagrammon ábrázolja!
4. Csillapítási tényező és jósági tényező meghatározása
A csillapítási tényező kísérleti meghatározásának egyik lehetséges módszere a csillapodási hányados mérésén alapul. Ekkor egymás utáni lengések amplitúdócsökkenéseit mérjük. Ennek észlelése akkor pontos, ha a lengő rendszer periódusideje eléggé nagy (kb. 3-10 s). Az alkalmazott rugónál a lengésidő rövidebb, emiatt egy másik módszer alkalmazása előnyösebb: a csillapítási- és jósági tényezők a sebességamplitúdó frekvenciafüggéséből meghatározhatók.
Illesszen a 3. pontban mért sebességamplitúdó adatokra a sebességamplitúdó – körfrekvencia függvénynek megfelelő görbét! Az illesztett görbe illesztési paraméterei között szerepel a csillapítási tényező és az saját körfrekvencia (valamint az hányados). Az illesztés alapján határozza meg ezeket a paramétereket és hibájukat. Ezek alapján már meghatározható a jósági tényező is.
5. Szorgalmi feladat: Lebegés vizsgálata
Két, kis mértékben különböző frekvenciájú, szinuszhullám szuperpozíciójakor „lebegés” alakul ki (9. ábra). Ha időpontban a rezgések éppen fázisban vannak, akkor a hullámok összeadódnak és az eredő rezgés maximális amplitúdójú lesz. Egy későbbi időpontban azonban a frekvencia különbség miatt a rezgések ellentétes fázisba kerülnek, és egymás hatását csökkentve minimális amplitúdót eredményeznek. Az amplitúdó változások burkológörbéje szintén szinuszos. A burkológörbe frekvenciája , ahol és a két összetevő rezgés frekvenciája.
A kényszerrezgés bekapcsolásakor az állandósult tag mellett egy darabig megfigyelhető a csillapított rendszer idővel elhaló saját rezgése is. A differenciálegyenlet megoldása tartalmazza a bekapcsolás után kialakuló mindkét frekvenciát. A tranziens rezgés körfrekvenciája , az állandósulté pedig . Lebegés akkor figyelhető meg, ha a kényszererő körfrekvenciája közelében van, és a csillapítás elég kicsi. Amint a tranziens elhal, a lebegés is megszűnik.
Szerelje le újra a csillapító mágnespofákat és állítsa be pontosan a mérőrúd helyzetét. Határozza meg a rendszer sajátfrekvenciáját! (A 2. méréshez hasonlóan használja a készülék kijelzőjén a PERIOD állást! ) Állítsa a kényszerkeréken az amplitúdót 2 mm-re! Kapcsolja be a kényszermozgást és szabályozza annak frekvenciáját úgy, hogy 0,1 Hz-cel legyen alacsonyabb, mint ! Jegyezze fel mindét frekvencia értékét és kapcsolja ki a kényszert! Várjon, amíg a mérőrúd megáll! Állítsa a funkciókapcsolót AMPL. állásba.
Ábrázolja az amplitúdót az idő függvényében! Határozza meg a burkoló szinuszgörbe periódusidejét és frekvenciáját!
- Vesse össze az elmélet alapján várható értékekkel!
- Akkor kap szép lebegést, ha kicsi a csillapítás (leszedett mágnespofák, jól beállított mérőrúd (nem súrlódik).
FIGYELEM! A második alkalomra az eddigi feladatok előzetes kiértékelését el kell végezni és meg kell mutatni a mérésvezetőnek.
FELADATOK MÁSODIK ALKALOMMAL
Aktualizálás alatt!
Vissza a Fizika laboratórium 2. tárgyoldalára.