„3. Mérés: RC-körök vizsgálata” változatai közötti eltérés
A Fizipedia wikiből
16. sor: | 16. sor: | ||
| Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [http://physics.bme.hu/BMETE11AF42_kov]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy $T$ periodus idővel változó, $f$=1/$T$ frekvenciájú feszültség jel látható. Ha a jel amplitúdója $U_0$ és fázisa $\varphi$, az időfüggést az alábbi alakban adhatjuk meg: | | Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [http://physics.bme.hu/BMETE11AF42_kov]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy $T$ periodus idővel változó, $f$=1/$T$ frekvenciájú feszültség jel látható. Ha a jel amplitúdója $U_0$ és fázisa $\varphi$, az időfüggést az alábbi alakban adhatjuk meg: | ||
− | $$ U(t)=U_0cos(2\pi ft) $$ | + | $$ U(t)=U_0cos(2\pi ft+\varphi).$$ |
− | + | Hasznos még bevezetni a körfrekvenciát $\omega$=2$\pi$$f$. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet: | |
+ | |||
+ | $$ U(t)=U_0e^{\omega t+\varphi}=U_0e^\varphi e^{\omega t}.$$ | ||
+ | |||
+ | A harmonikusan változó feszültség a komplex síkon egy $U_0$ sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge $\omega t+\varphi$ állandó szögsebességgel fordul körbe. | ||
| [[File:Uosc.jpg|225px|thumb|right|Általános időben harmonikusan változó feszültség]] | | [[File:Uosc.jpg|225px|thumb|right|Általános időben harmonikusan változó feszültség]] | ||
|} | |} | ||
+ | ===Lineáris áramköri elemek=== | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | | Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás: | ||
+ | |||
+ | $$ U=RI $$ | ||
+ | |||
+ | Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg | ||
+ | $$ I=I_0e^{\omega t}, $$ | ||
+ | melyból kiszámíthatjuk a rajta eső feszültsége: | ||
+ | $$ U=RI_0e^{\omega t}. $$ | ||
+ | Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a $U_0$=$R$$I_0$ összefüggéssel számolhatjuk ki. | ||
+ | ök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [http://physics.bme.hu/BMETE11AF42_kov]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy $T$ periodus idővel változó, $f$=1/$T$ frekvenciájú feszültség jel látható. Ha a jel amplitúdója $U_0$ és fázisa $\varphi$, az időfüggést az alábbi alakban adhatjuk meg: | ||
+ | |||
+ | $$ U(t)=U_0cos(2\pi ft+\varphi).$$ | ||
+ | |||
+ | Hasznos még bevezetni a körfrekvenciát $\omega$=2$\pi$$f$. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet: | ||
+ | |||
+ | $$ U(t)=U_0e^{\omega t+\varphi}=U_0e^\varphi e^{\omega t}.$$ | ||
+ | |||
+ | A harmonikusan változó feszültség a komplex síkon egy $U_0$ sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge $\omega t+\varphi$ állandó szögsebességgel fordul körbe. | ||
+ | | [[File:Uosc.jpg|225px|thumb|right|Általános időben harmonikusan változó feszültség]] | ||
+ | |} | ||
==Mérési feladatok== | ==Mérési feladatok== |
A lap 2019. november 1., 19:53-kori változata
Tartalomjegyzék |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy periodus idővel változó, =1/ frekvenciájú feszültség jel látható. Ha a jel amplitúdója és fázisa , az időfüggést az alábbi alakban adhatjuk meg:
Hasznos még bevezetni a körfrekvenciát =2$\pi LaTex syntax error
\[f$. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet:\] A harmonikusan változó feszültség a komplex síkon egy sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge állandó szögsebességgel fordul körbe. |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg melyból kiszámíthatjuk a rajta eső feszültsége: Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a =$RLaTex syntax error
Hasznos még bevezetni a körfrekvenciát =2$\pi\[I_0$ összefüggéssel számolhatjuk ki. ök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [http://physics.bme.hu/BMETE11AF42_kov]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy $T$ periodus idővel változó, $f$=1/$T$ frekvenciájú feszültség jel látható. Ha a jel amplitúdója $U_0$ és fázisa $\varphi$, az időfüggést az alábbi alakban adhatjuk meg:\] LaTex syntax error
\[f$. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet:\] A harmonikusan változó feszültség a komplex síkon egy sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge állandó szögsebességgel fordul körbe. |
Mérési feladatok
1. Feladat