„RLC körök mérése” változatai közötti eltérés

A Fizipedia wikiből
135. sor: 135. sor:
  
 
===Sáváteresztő szűrő===
 
===Sáváteresztő szűrő===
 +
 +
Az [http://fizipedia.bme.hu/index.php/RLC_k%C3%B6r%C3%B6k_m%C3%A9r%C3%A9se#S.C3.A1vz.C3.A1r.C3.B3_sz.C5.B1r.C5.91 1.5 pont]ban leírtak alapján alul- és felüláteresztő szűrőkből összeállítható olyan kapcsolás is, amely csak egy meghatározott tartományban engedi át a jeleket. Ezek a sáváteresztő szűrök.
 +
 +
Az eddig ismertetett szűrőkapcsolások passzív elemekből állnak, jellemzőjük, hogy a kimeneti jel az áteresztési tartományokban sem nagyobb a bemenetinél. Aktív eszközökkel (pl. [http://hu.wikipedia.org/wiki/M%C5%B1veleti_er%C5%91s%C3%ADt%C5%91 műveleti erősítő]) készíthető olyan szűrő, amelyik egyben a jel erősítését is elvégzi az áteresztési tartományban.
 +
 +
===Soros rezgőkör===
 +
 +
Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (4. ábra).
 +
 +
A hálózat eredő impedanciája:
 +
 +
{| width = "100%"
 +
|-
 +
| width = "10%" |
 +
| width = "80%" | <div class="texdisplay"><latex display >\[ \mathbf{Z} = R + j\omega L + 1/j\omega C \]</latex></div>
 +
| align = "right" | <span id="eq10"> (10) </span>
 +
|}
 +
 +
Az impedancia abszolút értéke és fázisszöge:
 +
 +
{| cellpadding="2" style="border: 0px solid darkgray;" align="center"
 +
|- border="0"
 +
|- align="center"
 +
| width="257pt" | <div class="texdisplay"><latex display >\[ Z(\omega) =  \sqrt{R^2 + (\omegaL-1/\omega C)^2}  \]</latex></div>
 +
| width="257pt" | <div class="texdisplay"><latex display >\[ \textrm{\fi}=\frac{\omega L - 1/\omega C}{R}      \]</latex></div>
 +
|}
 +
 +
A körben folyó áram:
 +
 +
{| width = "100%"
 +
|-
 +
| width = "10%" |
 +
| width = "80%" | <div class="texdisplay"><latex display >\[ I(\omega) = \frac{U_{be}}{\sqrt{R^2 + (\omegaL-1/\omega C)^2}} \]</latex></div>
 +
| align = "right" | <span id="eq11"> (11) </span>
 +
|}
 +
 +
A $Z(\omega)$ és $I(\omega)$ függvényeket ábrázolva a kapcsolás jellegzetes tulajdonságaira derül fény (5. ábra).

A lap 2012. február 10., 17:59-kori változata

Szerkesztés alatt!


Tartalomjegyzék


A mérés célja:

-megismerkedni a leggyakrabban használt frekvenciafüggő áramköri elemekkel és az ezekből felépülő szelektív áramkörökkel.

Ennek érdekében:

-áttekintjük a váltakozó áramú hálózatok reaktáns elemeinek tulajdonságait és néhány egyszerű szűrő és egy rezgőkör frekvenciafüggő viselkedését; -méréseket végzünk a fent említett hálózatokon.

Elméleti összefoglaló

Tekercs

A tekercsben indukálódó feszültséget az

\[ u(t) = L \frac{\textrm{d} i(t)}{\textrm{d} t} \]
(1)

egyenlet írja le. Szinuszos gerjesztés [ \setbox0\hbox{$ i(t)=I_0 \textrm{sin}\omega t $}% \message{//depth:\the\dp0//}% \box0% ] esetén

\[ u(t) = L \omega I_0 \textrm{cos}\omega t,  \]
(2)

ami a következő alakba is írható:

\[ u(t) = L \omega I_0 \textrm{sin}( \omega t + 90^\circ ),  \]
(3)

tehát a tekercsben fellépő feszültség 90°-ot siet az átfolyó áramhoz képest. A jelenség magyarázata a Lenz-törvényen alapul.

Kondenzátor

A kondenzátoron átfolyó áram időfüggését az alábbi egyenlet írja le:

\[ i(t) = C \frac{\textrm{d} u(t)}{\textrm{d} t}.  \]
(4)

Szinuszos gerjesztés [ \setbox0\hbox{$ u(t)=U_0 \textrm{sin}\omega t $}% \message{//depth:\the\dp0//}% \box0% ] esetén:

\[ i(t) = C \omega U_0 \textrm{cos}\omega t,  \]
(5)

ami a fentiekhez hasonlóan a következő alakba írható:

\[ i(t) = C \omega U_0 \textrm{sin}( \omega t + 90^\circ ),  \]
(6)

azaz a kondenzátor árama 90°-ot siet a feszültségéhez képest. Magyarázata az, hogy először áram folyik, így töltések kerülnek a lemezekre, és ezek hozzák létre a feszültséget. Gyakran szükséges a kondenzátor feszültségének ismerete, ami (4) alapján az alábbiak szerint számítható:

\[ u(t) = \frac{1}{C} \int i(t)\textrm{d}t .  \]
(7)

Aluláteresztő szűrő

Írjuk fel az 1.a és 1.b ábrákon látható kapcsolások kimenő feszültségeit! (A vastag betűs mennyiségek komplex változók, \setbox0\hbox{$j$}% \message{//depth:\the\dp0//}% \box0% a képzetes egység.)

LowpassA.jpg
LowpassB.jpg
\[ \begin{array}{rcl} \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{1/j\omega C}{R + 1/j\omega C} \\ \\ \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{1}{1 + j\omega RC} \end{array}  \]
\[  \begin{array}{rcl}  \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{R}{R + j\omega L} \\ \\ \mathbf{U}_{ki}  & = &  \mathbf{U}_{be} \frac{1}{1 + j\omega L/R}  \end{array}  \]

A kimeneti és bemeneti feszültségek hányadosa a hálózatra jellemző, frekvenciafüggő kifejezés.

\[ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}   =  \frac{1}{1 + j\omega RC}  \]
\[ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}   =  \frac{1}{1 + j\omega L/R}   \]
(8)

A két (8) kifejezés formailag azonos, tehát a két kapcsolás azonos jellegű viselkedést mutat. Ameddig \setbox0\hbox{$\omega RC \ll 1$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\omega L/R \ll 1$}% \message{//depth:\the\dp0//}% \box0%, a kifejezések értéke 1, ha \setbox0\hbox{$\omega RC \gg 1$}% \message{//depth:\the\dp0//}% \box0% vagy \setbox0\hbox{$\omega L/R \gg 1$}% \message{//depth:\the\dp0//}% \box0%, a hányados értéke \setbox0\hbox{$1/\omega$}% \message{//depth:\the\dp0//}% \box0% szerint csökken. Ez azt jelenti, hogy adott \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$L$}% \message{//depth:\the\dp0//}% \box0% esetén az alacsony frekvenciájú jelek csillapítás nélkül jelennek meg a kimeneten, míg magasabb frekvenciákon a kimenő feszültség egyre kisebb. Ezeket a kapcsolásokat aluláteresztő szűrőknek nevezik.

Felüláteresztő szűrő

A 2.a és a 2.b ábrákon látható kapcsolásokat leíró egyenletek az előző pontban követett eljárás alapján az alábbiak szerint alakulnak.

HighpassA.jpg
HighpassB.jpg
\[ \begin{array}{rcl} \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{R}{R + 1/j\omega C} \\ \\ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}  & = & \frac{1}{1 + 1/j\omega RC} \end{array}  \]
\[  \begin{array}{rcl}  \mathbf{U}_{ki} & = & \mathbf{U}_{be} \frac{j\omega L}{R + j\omega L} \\ \\ \frac{\mathbf{U}_{ki}}{\mathbf{U}_{be}}  & = & \frac{1}{1 + R/j\omega L}  \end{array}  \]
(9)

A kifejezésekből jól látszik, hogy a kapcsolások a kisfrekvenciás jeleket nem engedik a kimenetre, míg a nagyfrekvenciás jelek csillapítás nélkül jelennek meg a kimeneti pontokon.

3.ábra

Sávzáró szűrő

Alul és felüláteresztő szűrők egymás után kapcsolásával és az áteresztési tartományok helyes megválasztásával előállítható olyan szűrő, amelyik csak egy meghatározott tartományban csillapítja a jelet. Az ilyen kapcsolást nevezik sávzáró szűrőnek. Ennek egy realizálása a kettős T szűrő, a 3. ábrán látható.

A kapcsolás részletes elemzése nélkül is megállapítható, hogy alacsony frekvenciákon a hosszági ellenállásokon, magas frekvenciákon a hosszági kondenzátorokon jut jel a kimenetre.

Sáváteresztő szűrő

Az 1.5 pontban leírtak alapján alul- és felüláteresztő szűrőkből összeállítható olyan kapcsolás is, amely csak egy meghatározott tartományban engedi át a jeleket. Ezek a sáváteresztő szűrök.

Az eddig ismertetett szűrőkapcsolások passzív elemekből állnak, jellemzőjük, hogy a kimeneti jel az áteresztési tartományokban sem nagyobb a bemenetinél. Aktív eszközökkel (pl. műveleti erősítő) készíthető olyan szűrő, amelyik egyben a jel erősítését is elvégzi az áteresztési tartományban.

Soros rezgőkör

Kondenzátor és tekercs soros kapcsolását (a veszteségeket soros ellenállással figyelembe véve) soros rezgőkörnek nevezik (4. ábra).

A hálózat eredő impedanciája:

\[ \mathbf{Z} = R + j\omega L + 1/j\omega C \]
(10)

Az impedancia abszolút értéke és fázisszöge:

LaTex syntax error
\[ Z(\omega) =   \sqrt{R^2 + (\omegaL-1/\omega C)^2}  \]
LaTex syntax error
\[ \textrm{\fi}=\frac{\omega L - 1/\omega C}{R}       \]

A körben folyó áram:

LaTex syntax error
\[ I(\omega) = \frac{U_{be}}{\sqrt{R^2 + (\omegaL-1/\omega C)^2}} \]
(11)

A \setbox0\hbox{$Z(\omega)$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$I(\omega)$}% \message{//depth:\the\dp0//}% \box0% függvényeket ábrázolva a kapcsolás jellegzetes tulajdonságaira derül fény (5. ábra).