Kvantuminformatika

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Palyi (vitalap | szerkesztései) 2019. február 26., 13:45-kor történt szerkesztése után volt.

Tartalomjegyzék

Quantum Information Processing

Course Information, 2019 Spring

  • Lecturers: András Pályi, Zoltán Zimborás
  • Responsible lecturer: András Pályi
  • Language: English
  • Location: F3212
  • Time: Wednesdays, 12:15-13:45

Details

  • One goal is to provide an introduction to basic concepts of quantum information theory and computing. Another goal is to provide hands-on experience in programming an actual quantum computer. That is, the basic concepts, gadgets, algorithms, etc., should be implemented and run by the students themselves during the course and as homework. We will use the quantum computers of the IBM Quantum Experience project, which are available via the cloud for anyone.
  • Lectures will combine conventional, frontal presentation, and programming exercises. Therefore, the location is a computer lab. Of course, students are welcome to use there own laptop computers.
  • The main resource used for the course is the online documentations of (1) the quantum computers available through the IBM Quantum Experience project [1], and (2) the Qiskit quantum computing framework [2].

Course material

# Lecture Exercises Solutions Homework Solutions
01 Basics: quantum information, python, qiskit ExercisesLecture01.pdf SolutionsLecture01.pdf SolutionsLecture01-QX.pdf
02 The Bernstein-Vazirani quantum algorithm
03 Decoherence 1: the density matrix ExercisesLecture03.pdf SolutionsLecture03.pdf
04 ... ... ... ...

List of topics

  • Basics: quantum information, python, and qiskit (Lecture 1, AP)
  • Bernstein-Vazirani algorithm (Lecture 2, ZZ)
  • Density matrix. State tomography. Process Tomography. Relaxation. Dephasing. Decoherence. (Lectures 3-5, AP).
  • Quantum algorithms: Deutsch, Grover, Shor, quantum simulation (Lectures 6-9, ZZ)
  • Classical, hybrid, and quantum error correction using the repetition code. (Lectures 10-11, AP)
  • Bell inequalities. Quantum teleportation. (Lecture 12, ZZ)