3. Mérés: RC-körök vizsgálata

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Bordacs (vitalap | szerkesztései) 2019. november 1., 19:56-kor történt szerkesztése után volt.


Tartalomjegyzék


Elméleti összefoglaló

Időben harmonikusan változó jel

Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% periodus idővel változó, \setbox0\hbox{$f$}% \message{//depth:\the\dp0//}% \box0%=1/\setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% frekvenciájú feszültség jel látható. Ha a jel amplitúdója \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% és fázisa \setbox0\hbox{$\varphi$}% \message{//depth:\the\dp0//}% \box0%, az időfüggést az alábbi alakban adhatjuk meg:
\[ U(t)=U_0cos(2\pi ft+\varphi).\]

Hasznos még bevezetni a körfrekvenciát \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0%=2\setbox0\hbox{$\pi f$}% \message{//depth:\the\dp0//}% \box0%. Az időbeli változást leíró differenciál egyenletek könnyebb kezeléséhez érdemes bevezetni az alábbi komplex változót, melynek valós része adja a mérhető jelet:

\[ U(t)=U_0e^{\omega t+\varphi}=U_0e^\varphi e^{\omega t}.\]

A harmonikusan változó feszültség a komplex síkon egy \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0% sugarú kört ír le. A komplex számot reprezentáló vektor fázisszöge \setbox0\hbox{$\omega t+\varphi$}% \message{//depth:\the\dp0//}% \box0% állandó szögsebességgel fordul körbe.

Általános időben harmonikusan változó feszültség

Lineáris áramköri elemek

Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
\[ U=RI \]

Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg

\[ I=I_0e^{\omega t}, \]

melyból kiszámíthatjuk a rajta eső feszültsége:

\[ U=RI_0e^{\omega t}. \]

Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a \setbox0\hbox{$U_0$}% \message{//depth:\the\dp0//}% \box0%=\setbox0\hbox{$RI_0$}% \message{//depth:\the\dp0//}% \box0% összefüggéssel számolhatjuk ki.

Általános időben harmonikusan változó feszültség

Mérési feladatok

1. Feladat