3. Mérés: RC-körök vizsgálata
Tartalomjegyzék |
Elméleti összefoglaló
Időben harmonikusan változó jel
Lineáris áramkörök és harmonikusan változó áram és feszültség jelek részletes tárgyalását lásd a Kisérleti Fizika 1 kurzus rezgésekről szóló fejezetében [1]. A fontosabb mennyiségeket és összefüggéseket alább összefoglaljuk. Az ábrán egy ![]() ![]() ![]() ![]() ![]() ![]() Hasznos még bevezetni a körfrekvenciát ![]() A harmonikusan változó feszültség a komplex síkon egy |
Lineáris áramköri elemek
Lineáris áramköri elemek esetén az áthajtott áramot és az elemen eső fezsültséget vagy azok deriváltjait lineáris összefüggés kapcsolja össze. Legegyszerűbb ilyen elem az ohmikus ellenállás:
![]() Az ellenálláson áthaladó áramot az alábbi komplex alakban adhatjuk meg ![]() melyből kiszámíthatjuk a rajta eső feszültsége: ![]() Tehát az áram és a feszültség fázisa azonos az amplitúdokat pedig a |
Egy ![]() ![]() Az időben harmonikusan változó áramot ismét komplex alakban adjuk meg ![]() melyből a tekercs kapcsain mérhető feszültség: ![]() Tehát a feszültség fázisa |
A ![]() ![]() Ezt az összefüggést deriválva és átrendezve a korábbiakhoz hasonló alakú kifejezést kapunk: ![]() hiszen a kondenzátor eltolási árama a töltésváltozással egyenlő. A komplex feszültség-áram összefüggés az alábbi alakot ölti: ![]() Tehát a feszültség fázisa - |
Mérési feladatok
1. Feladat A próbapanelen állítsunk össze egy =10 k
ellenállásból és az ismeretlen
kapacitású kondenzártorból (barna áramköri elem) álló soros kapcsolást.
bemenetre csatlakoztassuk a myDAQ mérőkártya AO 0 illetve AGND (referencia pont) kimenetét, és a függvénygenerátor segítségével kapcsoljunk a bemenetre f=1\,kHz frekvenciájú,
p=1\,V-os szinusz jelet. A bemeneti és a kondenzátoron eső Uki kimeneti feszültséget kapcsoljuk a mérőkártya AI 0+, AI 0- és AI 1+, AI 1- csatlakozói közé. Az oszcilloszkóp mindkét csatornáját kapcsoljuk be, majd állítsuk be a feszültségerősítést, időosztást valamint a triggert.
\begin{figure}[h!] \begin{center} \includegraphics[width=10 cm]{RC.png} \caption{} \end{center} \end{figure}
Rögzítsük mindkét csatornán a feszültség időfüggését, majd az oszcilloszkóp program STOP gombjának megnyomasa után, a LOG gomb segítségével mentsük el a mért jelalakokat. Az IGOR segítségével olvassuk be a jeleket. (A loadwaves/tweaks menu beállításai: az összes elválasztó jelet ki kell pipálni, date format: year.month.day, line containing column label: 2, first line containing data: 5.) A data/change wave scaling menüvel állítsuk be az időtengely lépésközét. (Figyelem az oszcilloszkóp időalapjának változtatásával változik a skálázás is!) Illesszünk szinusz görbét, és az illesztésből határozzuk meg a két jel amplitúdójának arányát, illetve a fázisuk különbséget. Számítsuk ki az ismeretlen C kapacitást és becsüljük meg a mérés hibáját. Végezzük el a fenti mérést 100 Hz-en, 330 Hz-en, 3.3 kHz-en és 10 kHz-en is. A mért amplitúdó arányokat és fáziskülönbségeket a frekvencia logaritmusának függvényében ábrázoljuk. Miért nevezik ezt a kapcsolást aluláteresztő szűrőnek?