„Az elektron töltése és a Boltzmann-állandó hányadosának (e/k) mérése. A Planck és a Boltzmann-állandó hányadosának (h/k) mérése.” változatai közötti eltérés

A Fizipedia wikiből
74. sor: 74. sor:
  
 
*4. Számolja ki $I_s$ értékeit és ábrázolja az $I_s-T$ grafikont!
 
*4. Számolja ki $I_s$ értékeit és ábrázolja az $I_s-T$ grafikont!
 +
 +
==Irodalom==
 +
'''Aldert van der  Ziel: Szilárdtest elektronika, Műszaki Könyvkiadó, 1982'''
  
 
==PDF formátum==
 
==PDF formátum==
 
*[[Media:E_per_k_2011_02_07.pdf|Az elektron töltése és a Boltzmann-állandó hányadosának (e/k) mérése]]
 
*[[Media:E_per_k_2011_02_07.pdf|Az elektron töltése és a Boltzmann-állandó hányadosának (e/k) mérése]]

A lap 2013. január 23., 17:23-kori változata



Szerkesztés alatt!

A mérés célja:

  • termikusan aktivált folyamat tanulmányozása félvezető p–n átmenetben,
  • az arány meghatározása.

Ennek érdekében:

  • összefoglaljuk a p–n átmeneten folyó áramra vonatkozó elméleti alapismereteket,(a jelenségek igen részletes leírása a megadott irodalomban olvasható),
  • kimérjük egy tranzisztor kollektor-áramának a bázis–emitter feszültségtől való függését, és meghatározzuk az arányt.

Tartalomjegyzék


Elméleti összefoglaló

Az elektron töltése (\setbox0\hbox{$e$}% \message{//depth:\the\dp0//}% \box0%) és a Boltzmann-állandó (\setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0%) fontos természeti állandók, amelyek ismeretére számos jelenség leírásánál szükségünk van. Az olyan folyamatokat, amelyeknek során pl. egy részecske a továbbhaladásához szükséges energiát a termikus mozgásból származó véletlen energiaközlés révén szerzi meg, termikusan aktivált folyamatoknak nevezik. Ezen jelenségek tanulmányozása lehetőséget ad e két állandó arányának (\setbox0\hbox{$e/k$}% \message{//depth:\the\dp0//}% \box0%) meghatározására. Magával ezzel az aránnyal is gyakran találkozunk, de emellett arra is felhasználhatjuk, hogy az egyik állandó és az arány ismeretében a másik állandó értékét ki-számítsuk.

Félvezetőkben az elektromos áramot elektronok és lyukak (elektronhiányok) mozgása eredményezi. Bizonyos adalék anyagok (foszfor, arzén) hatására a félvezetőkben az elektronok any-nyira túlsúlyba kerülnek a lyukakhoz képest, hogy gyakorlatilag csak elektronvezetés alakul ki: az ilyen félvezetőt n típusúnak nevezik. Más adalékok (bór, gallium, alumínium) viszont a félvezetőben lyukvezetést hoznak létre: az ilyen félvezetők a p típusú félvezetők.

Ha egy p típusú és egy n típusú félvezetőt érintkezésbe hozunk (ez az ún. p–n átmenet), akkor az érintkezési helyen kontaktpotenciál jön létre, mert energetikai okok miatt az n típusú részből elektronok mennek át a p típusú részbe (így az negatív többlettöltésre tesz szert), a p típusú részből viszont lyukak mennek át az n típusú részbe (így abban pozitív többlettöltés jön létre). A kontaktus létrejöttének pillanatában te-hát egy, a p rétegből az n rétegbe irányuló kezdeti áram folyik. Az áram hatására a potenciálkülönbség nő, ami egyre jobban akadályozza a további töltésátmenetet, ezért egy bizonyos feszültség elérése után a p→n irányú áram megszűnik, és kialakul egy állandósult kontaktpotenciál. Ezzel egyidejűleg a kontaktus két oldalán létrejön egy olyan tartomány, amelyben nincsenek mozgásképes töltéshordozók. A töltés-hordozók áthaladását (a p→n irányú áramot) ezen a kiürített tartományon át a létrejött \setbox0\hbox{$U_D$}% \message{//depth:\the\dp0//}% \box0% magasságú potenciálgát akadályozza, ezért külső feszültség nélkül a töltéshordozók csak a termikus mozgás segítségével, véletlenszerűen jutnak át.

Eléggé általánosan igaz, hogy a termikusan aktivált folyamat gyakorisága az e^{- \frac{E}{k T} } faktorral arányos, ahol \setbox0\hbox{$E$}% \message{//depth:\the\dp0//}% \box0% a továbbhaladáshoz szükséges energia, \setbox0\hbox{$k$}% \message{//depth:\the\dp0//}% \box0% a Boltzmann-állandó, \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% pedig az abszolút hőmérséklet. Ennek megfelelően annak gyakorisága, hogy egy lyuk p→n irányban vagy egy elektron n→p irányban az \setbox0\hbox{$U_D$}% \message{//depth:\the\dp0//}% \box0% magasságú potenciálgáton átugrik, az \setbox0\hbox{$e^{- \frac{e U_D}{k T} }$}% \message{//depth:\the\dp0//}% \box0% faktorral arányos (\setbox0\hbox{$e$}% \message{//depth:\the\dp0//}% \box0% az elektron töltésének nagysága). Ez egyben azt is jelenti, hogy a termikus aktiváció segítségével a potenciálgáton át egy p→n irányú, ún. injektált áram folyik:

 
\[ I_I = C_0 e^{-\frac{e U_D}{kT} } \]
(1)

A kiürített tartományon át ugyanakkor létrjön egy ellenkező irányú áram is, ami annak kö-vetkezménye, hogy a termikus mozgás (termikus aktiváció) révén, ha kis számban is, de mindig keletkeznek töltéshordozók, így – többek között – a kiürített réteg n oldalán lyukak, p oldalán pedig elektronok jelennek meg. Mivel a kontaktpotenciál ezeknek a mozgását a kontaktuson át éppen elősegíti, ily módon egy n→p irányú, ún. telítési (szaturációs) áram, I_s jön létre. Ez az áram nem függ a kontaktuson kialakult feszültségtől, csak a termikusan keltett töltéshordozók mennyiségétől. Külső feszültség nélküli (egyensúlyi) állapotban a két áram egymást kiegyenlíti, vagyis ekkor \setbox0\hbox{$I_I {{=}} I_s$}% \message{//depth:\the\dp0//}% \box0%.

Ha a p–n átmenetre \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% külső feszültséget kapcsolunk, akkor ez módosítja a potenciálgát magasságát, ezért megváltoztatja az injektált áramot, amely most

 
\[ I_I = C e^{-\frac{e\left( U_D - U \right)}{kT} } \]
(2)

Itt \setbox0\hbox{$C$}% \message{//depth:\the\dp0//}% \box0% állandó, az \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% feszültség pedig negatív, ha a feszültség a kontaktpotenciállal egyirányú, és pozitív, ha azzal ellentétes. Mivel \setbox0\hbox{$U {{=}} 0$}% \message{//depth:\the\dp0//}% \box0% esetén \setbox0\hbox{$I_I{{=}}I_s{{=}}Ce^{-\frac{eU_D}{kT} }$}% \message{//depth:\the\dp0//}% \box0%,

 
\[ C=I_se^{\frac{eU_D}{kT} }, \]
(3)

amivel az injektált áramra azt kapjuk, hogy

 
\[ I_I=I_se^{\frac{eU}{kT} }. \]
(4)

A kontaktuson átfolyó \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% eredő áram a feszült-ségfüggő \setbox0\hbox{$I_I$}% \message{//depth:\the\dp0//}% \box0% injektált áram és a feszültségtől független \setbox0\hbox{$I_S$}% \message{//depth:\the\dp0//}% \box0% telítési áram különbsége:

 
\[ I=I_s\left(e^{\frac{eU}{kt} }-1 \right). \]
(5)

Ez az összefüggés azt az ismert tapasztalatot tükrözi, hogy egy ilyen kontaktus különböző irányban előfeszítve különböző nagyságú áramot bocsát át, más szóval egyenirányít. Az ilyen egyenirányító p–n átmenetet félvezető diódának nevezik.

A mérési módszer

A mérés során egy félvezető eszközben az (5) egyenlettel leírható áram-feszültség összefüggést (ún. áram–feszültség karakterisztikát) mérünk ki, és az exponensben szereplő kifejezés kiértékelésével meghatározzuk az \setbox0\hbox{$e/k$}% \message{//depth:\the\dp0//}% \box0% arányt. A mérés könnyebben megvalósítható, ha nem közvetlenül dióda-karakterisztikát vizsgálunk, hanem az 1.ábrán látható elrendezésben egy tranzisztor kollektor¬áramának (\setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0%) a bázis–emitter feszültség-től (\setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0%) való függését vizsgáljuk, amely ugyancsak az (5) egyenlettel írható le (a tranzisztor – mint az ábrán is látható – lényegében két egymáshoz kapcsolt félvezető dióda).

1.ábra: a dióda karakterisztikájának a meghatározásához használt áramkör

Az (5) alakú karakterisztikából az \setbox0\hbox{$e/k$}% \message{//depth:\the\dp0//}% \box0% hányados elvileg meghatározható, de az összefüggés egyszerűsítésével a feladat is egyszerűsíthető. Mivel méréseinket szobahőmérséklethez közeli hőmérsékleteken végezzük, érvényes, hogy e^{\frac{eU}{kT} }, így az egyenletben az exponenciális tag mellett az „1” elhanyagolható, mivel a félvezetők jellemző tiltott sávszélessége \setbox0\hbox{$100meV$}% \message{//depth:\the\dp0//}% \box0% nagyságrendű. Ezért jó közelítéssel ér-vényes, hogy

 
\[ I=I_se^{\frac{eU}{kt} }. \]
(6)

Ha az egyenlet mindkét oldalának a termé-szetes alapú logaritmusát vesszük, akkor az \setbox0\hbox{$I–U$}% \message{//depth:\the\dp0//}% \box0% összefüggés linearizálható, hiszen

 
\[ln I =ln I_s+\frac{e}{kT}U. \]
(7)

Ez azt jelenti, hogy ha a hőmérsékletet állandó értéken tartva megmérjük a kollektoráramot különböző bázis–emitter feszültségeknél, majd az áramértékek természetes logaritmusát ábrázoljuk a feszültség függvényében, akkor a pon-tok egy egyenest adnak. Jelölje a mérési pon-tokhoz illesztett egyenes meredekségét \setbox0\hbox{$M_U$}% \message{//depth:\the\dp0//}% \box0%.

 
\[ M_U=\frac{e}{kT} \]
(8)

összefüggés, amiből az \setbox0\hbox{$e/k$}% \message{//depth:\the\dp0//}% \box0% hányadosra azt kapjuk, hogy

 
\[ \frac{e}{k} =M_UT \]
(9)

A méréshez használt eszközök

  • MINISTAT 650 termosztát
  • HAMEG digitális multiméter
  • HAMEG hármas tápegység
  • Mérődoboz az alumínium tömbbe szerelt tranzisztorral és beállító elemekkel.

A mérőberendezés használata

A mérés az 1.ábrán már bemutatott áramkörben történik. Az áramkör és az egyenfeszültséget adó tápegység egy átlátszó műanyag dobozban található, amelyhez a tápfeszültséget az oldallapján levő csatlakozó hüvelyekre kapcsolt 8 V-os egyenfeszültséggel biztosítjuk (2-3.ábrán). Az \setbox0\hbox{$I$}% \message{//depth:\the\dp0//}% \box0% kollektoráram és az \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% bázis–emitter feszültség mérésére szolgáló műszereket a doboz tetején található hüvelyekhez csatlakoztatjuk, az \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% feszültséget a Pu potenciométerrel változtatjuk.

2.ábra: a mérés során hasznát áramkör
3.ábra: az mérési elrendezés fényképen

Mivel az áram erősen függ a hőmérséklettől, a mérésnél a hőmérséklet állandó értéken tartásáról külön gondoskodni kell. A vizsgált tranzisztort tartó alumínium tömbön ezért termosztáttal stabilizált hőmérsékletű vizet áramoltatunk át. A tranzisztor hőmérséklete jó közelítéssel a víz hőmérsékletével egyezik meg, amelyet a termosztát hőmérőjével mérünk. A víz hőmérsékletét a termosztáton található kontakthőmérő segítségével állíthatjuk a kívánt értékre. A mérés a hőmérséklet beállításával kezdődik, az áram–feszültség mérését csak akkor kezdjük el, ha a hőmérséklet kellően stabilizálódott.

Mérési feladatok

  • 1. Kb.0.4V-0.5V között 20mV-onként változtatva a bázis–emitter feszültséget, vegye fel az áram–feszültség karakterisztikát 30ºC-on! Ügyeljen arra, hogy a feszültséggel semmiképp ne lépje túl az 1V értéket! Ezután attól a tartománytól kezdve, ahonnan (az exponenciális jelleg miatt) az áram láthatóan gyorsan változik (0.5V környékén várható), sűrítse a mérési pontokat távolságra! A mérést a potenciométer által behatárolt teljes feszültségtartományban végezze el.Ismételje meg a mérést 45, 60, 70, 80 ºC-on ! (A felfűtés után várja ki, amíg a termosztát néhányszori ki-be kapcsolása után biztosan stabilizálódott a tranzisztor hőmérséklete.)
  • 2. A kapott adatokat ábrázolja az \setbox0\hbox{$lnI-U$}% \message{//depth:\the\dp0//}% \box0% grafikonon, illesszen egyenest a pontokra, és hatá-rozza meg az egyenesek meredekségét!
  • 3. A meredekségek mindegyikéből határozza meg az \setbox0\hbox{$e/k$}% \message{//depth:\the\dp0//}% \box0% hányadost, átlagolja a kapott ér-tékeket, és becsülje meg a mérés hibáját!
  • 4. Számolja ki \setbox0\hbox{$I_s$}% \message{//depth:\the\dp0//}% \box0% értékeit és ábrázolja az \setbox0\hbox{$I_s-T$}% \message{//depth:\the\dp0//}% \box0% grafikont!

Irodalom

Aldert van der Ziel: Szilárdtest elektronika, Műszaki Könyvkiadó, 1982

PDF formátum