„Mágneses momentum mérése vibrációs magnetométerrel” változatai közötti eltérés

A Fizipedia wikiből
a
a
56. sor: 56. sor:
 
| {{fig|MM_01.png|fig:1|1. ábra. A mágneses momentum és a mérőhurok.}}
 
| {{fig|MM_01.png|fig:1|1. ábra. A mágneses momentum és a mérőhurok.}}
 
|}
 
|}
 
+
Amennyiben az „I” árammal '''H''' térerősséget létrehozó, valamint a Φ fluxust tartalmazó hurok és a mágneses momentum egy és ugyanaz mind a két esetben, az előbbi energiakifejezéseknek egyenlőnek kell lenniük:
 +
{{eq|W_1 {{=}} W_2 \qquad \to \qquad -\mathbf{m} \cdot \mathbf{H}^e \cdot I {{=}} \frac{I\cdot \Phi}{2}|eq:8|(8)}}
 +
ahol I-vel egyszerűsíthetünk, így a mágneses fluxus a hurokban:
 +
{{eq|\Phi {{=}} 2\cdot \mathbf{m} \cdot \mathbf{H}^e|eq:9|(9)}}
 +
Most azt az esetet vizsgáljuk meg, amikor a mágneses dipólust mozgatjuk a mérőhurokhoz képest. Ekkor ''a geometria változása fluxusváltozást eredményez'', amely a mérőtekercsben indukált feszültséget (U) hoz létre:
  
 
{|  cellpadding="5" cellspacing="0" align="center"
 
{|  cellpadding="5" cellspacing="0" align="center"

A lap 2013. február 6., 08:00-kori változata


A mérés célja:

A mérés célja megismerkedni egy makroszkopikus minta mágneses dipólmomentumának mérésével, valamint megvizsgálni egy lágymágneses anyag momentumának változását a külső mágnesező tér függvényében. A külső mágneses teret egyenáramú gerjesztő tekerccsel hozzuk létre, amely a különböző mintákban eltérő mágneses dipólmomentumot kelt. A mágneses térerősség mértéke a gerjesztő tekercs áramával szabályozható. Az ily módon felmágnesezett minta közelébe helyezett másik tekercsben (mérőtekercs) a dipólmomentum tere mágneses fluxust hoz létre. Ha a mintát a mérőtekercshez képest mozgatjuk, a tekercsben fluxusváltozás lép föl, ami feszültséget indukál. Az indukált feszültség értékéből a minta mágneses momentuma meghatározható. A mérési összeállítás akkor optimális, ha az elemek paramétereinek megválasztása révén (tekercsek alakja, minta helye stb.) a mért feszültség arányos a mágneses momentummal, valamint értéke a lehető legnagyobb.


Tartalomjegyzék


Szerkesztés alatt!

Elméleti összefoglaló

Elméleti alapok

Egy H mágneses térerősségvektorral jellemzett térben lévő közegben kialakuló B mágneses indukció a következő összefüggéssel írható le:

 
\[\mathbf{B} = \mathbf{\mu_0}(\mathbf{H} + \mathbf{M})\]
(1)

ahol M a mágneses dipólmomentum sűrűség vektor vagy mágnesezettségi vektor. Egy makroszkópikus méretű, „V” térfogatú test mágneses momentuma (m) a következő térfogati integrálással kapható meg:

 
\[\mathbf{m} = \mathbf{\int \limits_V M} dV\]
(2)

A mérés során az m(H) függvényt szeretnénk meghatározni. A mérés a mágneses indukció jelenségén alapul, vagyis mindenekelőtt meg kell határoznunk a bevezetőben említett mérőtekercsben indukált „U” feszültség és az m mágneses momentum közötti kapcsolatot. Az alábbiakban kivonatosan bemutatjuk a keresett összefüggés levezetését. Kiindulásul a Maxwell-egyenleteket alkalmazzuk kvázistacionárius közelítésben, azaz az időben változó terek okozta sugárzást elhanyagoljuk. A levezetés kulcsgondolata szerint először összehasonlítjuk egy „I” áramjárta tekercs mágneses terébe helyezett m mágneses dipólus energiáját azzal az energiával, amit ugyanez a dipólus tárol ugyanebben a tekercsben az általa létrehozott \setbox0\hbox{$\Phi$}% \message{//depth:\the\dp0//}% \box0% fluxus által. Így megkapjuk a \setbox0\hbox{$\Phi(m)$}% \message{//depth:\the\dp0//}% \box0% összefüggést. Mivel a fluxusnál az indukált feszültség sokkal egyszerűbben mérhető, mozgatni fogjuk a mintát, és meghatározzuk a keresett U(m) összefüggést.

A mérés elve

Először egy külső H mágneses térben lévő m dipólus energiáját (W1) írjuk föl skalárszorzat formájában:

 
\[W_1 = -\mathbf{m \cdot H}\]
(3)

amelynek alakja abból adódik, hogy a mágneses tér a momentumra forgatónyomatékot gyakorolhat. Tegyük fel, hogy a mágneses teret egy „g” görbével jellemezhető hurokban folyó „I” áram határozza meg. Egy vákuumban lévő \setbox0\hbox{$(\mathbf{B = \mu_0 \cdot H})$}% \message{//depth:\the\dp0//}% \box0% hurok által keltett tér a Biot-Savart-törvény szerint:

 
\[\mathbf{H(r)} = I \cdot \oint_g \frac{d\mathbf{r'}\times{}\left(\mathbf{r-r'}\right)}{{\left\vert{}\mathbf{r-r'}\right\vert{}}^3} = I \cdot \mathbf{H^e}\]
(4)

ahol \setbox0\hbox{$\mathbf{H^e}$}% \message{//depth:\the\dp0//}% \box0%-vel jelöltük az egységnyi áram által keltett mágneses térerősséget, amely csupán a geometriától függ. Ezt behelyettesítve (3)-ba a következőt kapjuk:

 
\[W_1 = - \mathbf{m} \cdot \mathbf{H^e} \cdot I\]
(5)

Másodszor azt nézzük meg, hogy mekkora az energiája az m mágneses momentum keltette B mágneses indukciójú térben található „A” felületű vezető huroknak, melyben „I” áram folyik:

 
\[W_2 = I \cdot \Phi /2\]
(6)

ahol \setbox0\hbox{$\Phi$}% \message{//depth:\the\dp0//}% \box0% a hurokban fellépő mágneses indukciófluxus:

 
\[\Phi = \int_A \mathbf{B} d\mathbf{A}\]
(7)
1. ábra. A mágneses momentum és a mérőhurok.

Amennyiben az „I” árammal H térerősséget létrehozó, valamint a Φ fluxust tartalmazó hurok és a mágneses momentum egy és ugyanaz mind a két esetben, az előbbi energiakifejezéseknek egyenlőnek kell lenniük:

 
\[W_1 = W_2 \qquad \to \qquad -\mathbf{m} \cdot \mathbf{H}^e \cdot I = \frac{I\cdot \Phi}{2}\]
(8)

ahol I-vel egyszerűsíthetünk, így a mágneses fluxus a hurokban:

 
\[\Phi = 2\cdot \mathbf{m} \cdot \mathbf{H}^e\]
(9)

Most azt az esetet vizsgáljuk meg, amikor a mágneses dipólust mozgatjuk a mérőhurokhoz képest. Ekkor a geometria változása fluxusváltozást eredményez, amely a mérőtekercsben indukált feszültséget (U) hoz létre:

2. ábra. A mérőhurok geometriája a magnetométerben.

A vibrációs magnetométer

3. ábra. A mérési elrendezés vázlatrajza.
4. ábra. A mérőkészülék a valóságban.
5. ábra. A fázisérzékeny (lock-in) erősítő.

Mérési feladatok

PDF formátum

Mágneses momentum mérése vibrációs magnetométerrel