„Fizika 1i angol nyelven - Mérnök informatikus alapszak” változatai közötti eltérés

A Fizipedia wikiből
(Visszavontam Halbritt (vita | szerkesztései) szerkesztését (oldid: 26141))
 
(2 szerkesztő 25 közbeeső változata nincs mutatva)
4. sor: 4. sor:
 
[[Kategória:Fizika Tanszék]]
 
[[Kategória:Fizika Tanszék]]
 
[[Kategória:Általános fizika]]
 
[[Kategória:Általános fizika]]
==Tárgy adatok (2011. őszi félév)==
+
==Tárgy adatok (2015. őszi félév)==
  
*Előadók: Dr. Bokor Nándor (TTK  Fizika Tanszék)
+
*[[Media:2014fall_coursedescription.pdf‎|2015. fall semester, course description and requirements]]
 
+
*Előadó: Dr. Bokor Nándor (TTK  Fizika Tanszék)
 
+
*Tantárgykód: TE11AX03
 
+
 
+
 
+
 
+
 
+
 
+
*Tantárgykód: TE11AX01
+
 
*Követelmények: 3/1/0/v
 
*Követelmények: 3/1/0/v
*Kredit: 5
+
*Kredit: 4
*Nyelv: magyar
+
*Nyelv: angol
*Félévközi számonkérések:
+
*Félévközi számonkérések: 5 kis zh, 1 nagy zh
*Félév végi jegy: íresbeli vizsga.
+
*Félév végi jegy: írásbeli vizsga.
*[https://www.vik.bme.hu/kepzes/targyak/TE11AX01/ Tárgylap]
+
*[http://physicsinfo.fw.hu/]
+
 
+
==A tantárgy célkitűzése==
+
A Fizika tantárgy célja a mérnökképzésben kettős. Egyrészt meg kell ismertetni a hallgatóságot azokkal a fizikai törvényekkel és összefüggésekkel, amelyek a konkrét műszaki problémák megoldásának az elvi hátterét adják. Másrészt ezek a törvények (és elvek) általánosságuknál fogva maghatározzák az adott kor modern természettudományos világképét is, így ennek kialakítása ugyancsak fontos feladat a mérnökképzés folyamatában. Mindez alapvetően hozzájárul a műszaki értelmiség társadalmi hitelének és tudományos presztízsének a magalapozásához.
+
 
+
A Fizika 1 a "Hudson-Nelson: Útban a modern fizikához" tankönyv fejezeteit követi.
+
 
+
A tantárgy keretében tárgyalt mechanika, a hőtan és az elektrodinamika csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását kell megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 15-20 perc, a tárgyhoz tartozó demonstráció segíti.
+
 
+
==A tantárgy részletes tematikája (heti bontásban)==
+
===1. hét===
+
:'''KÍSÉRLETEK:''' Kísérletek légpárnás sínen (egyenes vonalú mozgások). Mikola cső. Galilei lejtő, Galilei ejtőzsinór. Rezgőmozgás megjelenítése.
+
 
+
:'''1. előadás''' (Hudson-Nelson 001-019 oldal):
+
 
+
::BEVEZETÉS:  A fizika tárgya és módszerei. Elmélet és megfigyelés
+
 
+
::EGYENESVONALÚ MOZGÁSOK: Tér és idő mérése. Mértékegységek átszámítása. Koordinátarendszerek és vonatkoztatási rendszerek. Hely, elmozdulás, sebesség és sebességvektor
+
 
+
:'''2. előadás:''' (Hudson-Nelson 019-029 oldal):
+
 
+
::EGYENESVONALÚ MOZGÁSOK: A gyorsulás. Az egyenes vonalú egyenletesen gyorsuló mozgás kinematikai egyenletei. A kinematikai egyenletek levezetése diferenciálszámítással.
+
 
+
::Az elmozdulás, sebesség és gyorsulás közötti összefüggés grafikus értelmezése. A dimenzióanalízis
+
 
+
===2. hét===
+
 
+
:'''KÍSÉRLETEK:''' A tehetetlenségi törvény szemléltetése (madzagtépés, diótörés fejen) Erők vektori összegezése. Fakírágy.
+
 
+
:'''1. előadás''' (Hudson-Nelson 045-071 oldal):
+
 
+
::SÍKBELI ÉS TÉRBELI MOZGÁS: Kétdimenziós koordinátarendszerek és a helyzetvektor. Az elmozdulás vektor. A sík- és térbeli mozgás sebessége és gyorsulása.
+
 
+
::KÖRMOZGÁS: Síkbeli polár koordináták. A körmozgás sebessége és gyorsulása. Általános görbe vonalú mozgás
+
 
+
:'''2. előadás''' (Hudson-Nelson 075-104 oldal):
+
 
+
::A NEWTON-FÉLE MOZGÁSTÖRVÉNYEK: Megfigyelések és kísérletek a pontszerű részecskék mozgására vonatkozóan.    Az impulzus. Newton második törvénye. Tömeg és súly. Newton második törvényének alkalmazása.    Súrlódás. Newton harmadik törvénye
+
 
+
===3. hét===
+
 
+
:'''KÍSÉRLETEK:''' Ütközések légpárnás sínen. Rakétamozgás (cseppfolyós nitrogénnal).
+
 
+
:'''1. előadás''' (Hudson-Nelson 117-175 oldal):
+
 
+
::MUNKA, ENERGIA, TELJESÍTMÉNY: A munka. A kinetikus energia és a munkatétel. A helyzeti (potenciális) energia. A súrlódási erő és a súrlódási hő. A teljesítmény, a hatásfok
+
 
+
::KONZERVATÍV ERŐK ÉS AZ ENERGIA MEGMARADÁS : Konzervatív erők és nem-konzervatív erők. A a potenciális energia. A mechanikai energia megmaradása. Az energia megmaradás súrlódásos rendszerekben
+
 
+
:'''2. előadás''' (Hudson-Nelson 183-221 oldal):
+
 
+
::AZ IMPULZUS MEGMARADÁS: Az impulzus megmaradás. Az erőimpulzus. Folytonosan változó impulzus. A rakétamozgás.
+
 
+
::ÜTKÖZÉSEK: Rugalmas és rugalmatlan ütközések. A tömegközéppont és a tömegközéppont tétel.
+
 
+
===4. hét===
+
 
+
:'''KÍSÉRLETEK:''' Kísérletek fogózsámolyon. Pörgettyűmozgás. Perdület vektor szemléltetése forgó kerekekkel (elkészítés alatt). Tehetetlenségi nyomaték mérése lengő asztalkán.
+
 
+
:'''1. előadás''' (Pontrendszerek dinamikája (kiegészítés)):
+
 
+
::PONTRENDSZEREK DINAMIKÁJA (KIEGÉSZÍTÉS A KÖNYVHÖZ): Pontrendszerek impulzusa. Pontrendszerek perdülete. Pontrendszerek energiája. Megmaradási tételek
+
 
+
:'''2. előadás''' (Hudson-Nelson 230-248 odal (rövid összefoglalás); 258-314 oldal):
+
 
+
::A MEREV TEST FORGÓ MOZGÁSÁNAK KINEMATIKÁJA: A forgás kinematikai leírása. Testek általános mozgása. A forgó mozgásra vonatkozó kinematikai összefüggések. Gördülés (csúszás nélkül)
+
 
+
::A FORGÓ MOZGÁS DINAMIKÁJA: A forgatónyomaték. A tehetetlenségi nyomaték. párhuzamos tengelyek tétele (Steiner tétel). Az impulzusmomentum (perdület). Rögzített szimmetriatengelye körül forgó merev test mozgása. Az impulzusmomentum (perdület) megmaradása. A forgó testen végzett munka és a forgási energia. Felületen való gördülés. A pörgettyű
+
 
+
===5. hét===
+
 
+
:'''KÍSÉRLETEK:''' Centrifugál regulátor és szeparátor. Forgó rugalmas gyűrű torzulása. Forgó széken lengő inga. Coriolis erőhatás kimutatása kormozott forgó lappal; „Physics 2000” gravitációról szóló film.
+
 
+
:'''1. előadás''' (Hudson-Nelson 321-337 oldal):
+
 
+
::A MOZGÁS LEÍRÁSA GYORSULÓ KOORDINÁTARENDSZERBEN: Egyenes vonalú gyorsuló koordinátarendszerek. Forgó koordinátarendszerek. A centrifugális erő és a Coriolis erő.
+
 
+
:'''2. előadás''' (Hudson-Nelson 375-394 oldal):
+
 
+
::A GRAVITÁCIÓ: A Kepler törvények. Newton tömegvonzási törvénye. Pontszerű és kiterjedt test között fellépő gravitációs erők. A gravitációs mező. A gravitációs potenciális energia. A szökési sebesség és a kötési energia. A mesterséges holdak mozgásának energiaviszonyai
+
 
+
===6. hét===
+
 
+
:'''KÍSÉRLETEK:''' Szabad és gerjesztett csillapított rezgések bemutatása rugós rendszeren. Pohl- féle torziós inga. Torziós hullámok bemutatása. Hullámkádas kísérletek. Hangspektrum megjelelnítése (Fourier analízis).
+
 
+
:'''1. előadás''' (Hudson-Nelson 343-368 oldal):
+
 
+
::REZGÉSEK: Egyszerű harmonikus rezgő mozgás.  A harmonikus rezgő mozgás energiaviszonyai. Példák (fonálinga, torziós inga, fizikai inga). Csillapított és gerjesztett rezgések, rezonancia. Rezgések összeadása, Fourier spektrum.
+
 
+
:'''2. előadás''' (Hudson-Nelson 423-436 oldal):
+
 
+
::HULLÁMMOZGÁS (RUGALMAS ANYAGBAN ÉS GÁZOKBAN): A hullámegyenlet. A hullámegyenlet általános megoldása. A hullámegyenlet megoldása egy speciális esetben. Síkbeli és térbeli hullámok
+
 
+
===7. hét===
+
 
+
:'''KÍSÉRLETEK:''' Állóhullámok kimutatása gázokban, Reubens-féle cső. Hullámok visszaverődése hullámkádban. Lebegés jelenségének a bemutatása hangvillával. Ultrahang lebegés (hallható). Chladni ábrák..
+
 
+
:'''1. előadás''' (Hudson-Nelson 436-445 oldal):
+
 
+
::HULLÁMMOZGÁS (RUGALMAS ANYAGBAN ÉS GÁZOKBAN): A hullámmozgás energiaviszonyai. Hullámok visszaverődése. A szuperpozíció elve, állóhullámok. A Doppler jelenség. A lökéshullámok. A lebegés.
+
 
+
:'''2. előadás''' (Hudson-Nelson 977-994 oldal):
+
 
+
::A SPECIÁLIS RELATIVITÁSELMÉLET . A Galilei-transzformáció. A speciális relativitáselmélet posztulátumai. Az órák szinkronizálása. A Lorentz-transzformáció. A nyugalmi hossz. A mozgó órák aszinkronitása. A sajátidő. Az ikerparadoxon. A kauzalitás abszolút volta.
+
 
+
===8. hét===
+
 
+
:'''KÍSÉRLETEK:''' Gázhőmérő. Hővezetés. Hőtágulás (gyűrű-tengely rendszer). Kaloriméterek.
+
 
+
:'''1. előadás''' (Hudson-Nelson 994-1012 oldal):
+
 
+
::A SPECIÁLIS RELATIVITÁSELMÉLET (dinamika): A relativisztikus impulzus. Nyugalmi tömeg. A relativisztikus sebesség összeadás. A relativisztikus energia.  Az általános relativitás elmélet alapgondolata
+
 
+
:'''2. előadás''' (Hudson-Nelson 453-478 oldal):
+
 
+
::HŐMENNYISÉG ÉS HŐMÉRSÉKLET: A hőmérséklet. A hőmennyiség. Hőfelvétel és fázisátalakulás. Hővezetés. Hőterjedés áramlással. Hőterjedés sugárzással. Az állandó térfogatú gázhőmérő.
+
 
+
===9. hét===
+
 
+
:'''KÍSÉRLETEK:''' Ideális gáz (film). Kinetikus gázmodell szimulációja (film). A Maxwell-eloszlás bemutatása sok golyóból álló mechanikai modellel. Adiabatikus expanzió gázzal töltött palackkal.
+
 
+
:'''1. előadás''' (Hudson-Nelson 482-497 oldal):
+
 
+
::AZ IDEÁLIS GÁZ ÉS A KINETIKUS GÁZELMÉLET: Az ideális gáz. Az ideális gázmodell.
+
 
+
:'''2. előadás''' (Hudson-Nelson 503-525 oldal):
+
 
+
::A TERMODINAMIKA ELSŐ FŐTÉTELE: Alapfogalmak. A hő, az energia, a munka és az első főtétel. Reverzibilis és irreverzibilis folyamatok. Speciális folyamatok és mólhőik. Szabadsági fokok és az ekvipartíció tétele. Szilárd testek fajlagos hőkapacitása
+
 
+
===10. hét===
+
 
+
:'''KÍSÉRLETEK:''' Kísérletek Stirling motorral (hőerőgép szemléltetés). Joule kísérlet (hő munka egyenértékűség kimutatása). 
+
 
+
:'''1. előadás''' (Hudson-Nelson 529-542 oldal):
+
 
+
::A TERMODINAMIKA MÁSODIK FŐTÉTELE :A második főtétel. A Carnot körfolyamat. Hőerőgépek hatásfoka. Néhány hőerőgép típus. Az elérhető legnagyobb hatásfok, a Carnot körfolyamat hatásfoka. A Kelvin-féle abszolút hőmérsékleti skála. A termodinamika harmadik főtétele
+
 
+
:'''2. előadás''' (Hudson-Nelson 545-563 oldal):
+
  
::AZ ENTRÓPIA : Entrópia makroszkópikus szempontból. Entrópia vizsgálata mikroszkópikus szempontból. Az entrópia és a nem felhasználható energia. Entrópia és információ. Örökmozgók
+
*A kurzus előadására feliratkozó hallgatóknak az angol nyelvű gyakorlatra kell jelentkezniük.
  
===11. hét===
+
*[[Media:2014_practice.pdf‎|2015. fall semester, practice problems for the midterm test and the exam]]
  
:'''KÍSÉRLETEK:''' Kísérletek elektroszkóppal. Dörzsöléses elektromosság. Elektromos megosztás. Töltések elhelyezkedése szigetelőkön és vezetőkön. Csúcshatás. Van de Graaff generátor. Elektromos mező kimutatása ricinusolajban lévő grízszemekkel. Coulomb mérleg.  
+
*[[Media:INFO_exam.pdf‎|Information on the exam]]
  
:'''1. előadás''' (Hudson-Nelson 567-588 oldal):
+
Ajánlott irodalom: Serway: Physics for Scientists and Engineers
  
::A COULOMB TÖRVÉNY ÉS AZ ELEKTROMOS ERŐTÉR: Elektrosztatikus erők.Vezetők és szigetelők. A Coulomb törvény. Az elektromos erőtér. Az elektromos dipólus. Folytonos töltéseloszlások által létrehozott elektromos erőterek
+
==Kiegészítő oktatási anyagok az érdeklődőknek==
  
:'''2. előadás''' (Hudson-Nelson 595-609 oldal):
+
*[[Media:1_specrel_geometry.pdf‎|Special relativity using geometrical diagrams.]]
 +
*[[Media:1b_Lorentz_derivation.pdf‎|Derivation of the Lorentz transformation equations.]]
 +
*[[Media:2_inertiaforces.pdf‎|Description of motion in non-inertial frames. Inertia forces.]]
 +
*[[Media:3_inertiaforces_generalrelativity.pdf‎|From inertia forces to Einstein's theory of gravitation.]]
  
::GAUSS TÖRVÉNYE: Az elektromos fluxus. A Gauss törvény. A Gauss törvény és az elektromos vezetők
+
==A tantárgy részletes tematikája==
  
===12. hét===
+
:KINEMATICS: Motion in one dimension. Motion in two dimensions. Position vector. Average velocity, instantaneous velocity. Average acceleration, instantaneous acceleration. Position, velocity and acceleration in Cartesian and polar coordinates. Projectile motion. Circular motion. Curvilinear motion, tangential and radial accelerations.
  
:'''KÍSÉRLETEK:''' Töltött kondenzátor energiája. Erőhatások dielektrikumokban. Leideni palack.  
+
:THE LAWS OF MOTION: Inertial frames. Newton's laws. Force, mass. Normal force, tension, spring force, gravitational force, static and kinetic friction. Free body diagrams. The 1st cosmic speed.
  
:'''1. előadás''' (Hudson-Nelson  613-631 oldal):
+
:WORK AND ENERGY: Work of a varying force. Kinetic energy and the work-energy theorem. Power.
  
::AZ ELEKTROMOS POTENCIÁL: Az elektromos potenciál. A potenciál gradiense. Ekvipotenciális felületek
+
:POTENTIAL ENERGY: Work done by a spring. Work done by gravity. Work done by kinetic friction. Conservative and nonconservative forces. Potential energy. Conservation of mechanical energy. Changes in mechanical energy in the presence of nonconservative forces. Energy diagrams and the equilibrium of a system. The 2nd cosmic speed.
  
:'''2. előadás''' (Hudson-Nelson 635-649 oldal):
+
:LINEAR MOMENTUM AND COLLISIONS: Linear momentum. Conservation of momentum. Elastic and inelastic collisions in 1D, 2D and 3D. Center of mass. Rocket propulsion.
  
::KONDENZÁTOR ÉS AZ ELEKTROMOS ERŐTÉR ENERGIÁJA: A kapacitás fogalma. Kondenzátorok kapcsolása. Dielektrikumok. A kondenzátor energiája. Az elektromos erőtér energiája.
+
:ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS: Angular velocity vector, angular acceleration vector. Rotational kinetic energy. Moment of inertia. The parallel axis theorem. Torque. Work, power, energy.  
  
===13. hét===
+
:ANGULAR MOMENTUM: Angular momentum of a particle and a system of particles. Conservation of angular momentum. Gyroscopes. Analogy between translational and rotation motion.
  
:'''KÍSÉRLETEK:''' Kondenzátor feltöltése és kisütése. Elektromos ellenállás hőmérsékletfüggése. Elektromos vezetés folyadékokban és gázokban. Olvadó üveg elektromos vezetése. Mágneses térben lévő áramjárta keretre ható erők. Párhuzamos vezetők mágneses kölcsönhatása. Faraday motor.  
+
:KEPLER'S LAWS OF PLANETARY MOTION.
  
:'''1. előadás''' (Hudson-Nelson 655-669 és 690-696 oldal):
+
:STATIC EQUILIBRIUM: Conditions of equilibrium for a rigid object.
  
::AZ ELEKTROMOS ÁRAM ÉS AZ ELLENÁLLÁS: Az elektromotoros erő. Az elektromos áram. Az elektromos ellenállás. Az Ohm törvény. A Joule törvény. Az áramsűrűség és a vezetőképesség. Az RC-körök (kondenzátor feltöltése és kisütése).
+
:ACCELERATING FRAMES: Inertia forces: the translational inertia force, the centrifugal force, the Coriolis force, the Euler force. Discussion of motion in the rotating frame of the Earth.  
  
:'''2. előadás''' (Hudson-Nelson 705- 715 oldal):
+
:OSCILLATORY MOTION: Simple harmonic motion, amplitude, phase constant, angular frequency. Mass attached to a spring. Energy of a simple harmonic oscillator. The simple pendulum. The physical pendulum. The torsional pendulum. Damped oscillations. Forced oscillations. Resonance.
  
::A MÁGNESES ERŐTÉR:  A mágneses erőtér. Töltött részecskék mozgása mágneses erőtérben. A Lorentz-erő. A mágneses térben levő áramvezetőre ható erő
+
:WAVES: Transverse and longitudinal waves. Travelling waves in 1D. Reflection and transmission of waves. Sinusoidal waves, wavelength, period, wave number, angular frequency. The linear wave equation in 1D and in 3D. Spherical waves, plane waves. The Doppler effect, discussion using a spacetime diagram. Shock waves. Superposition and interference of sinusoidal waves. Standing waves: strings, air columns, membranes. Beats.  
  
===14. hét===
+
:SPECIAL RELATIVITY, KINEMATICS: The concept of events and observers. The Galilean transformation. The isotropy of the speed of light in any inertial frame. Einstein's postulates. The synchronization of clocks. Spacetime intervals: timelike, lightlike and spacelike intervals. Minkowski diagrams and worldlines of particles and light. The relativity of simultaneity. Length contraction and proper length. Time dilation and proper time. Causality. The twins paradox, the rod-barn paradox, the two spaceships paradox. The paradox of the identically accelerated twins. The acoustic Doppler effect vs. the electromagnetic Doppler effect. Velocity transformation.  
  
:'''KÍSÉRLETEK:''' Mágneses erővonalak kimutatása vasreszelékkel. Áramjárta egyenes vezető mágneses tere, Oersted kísérlet.  
+
:SPECIAL RELATIVITY, DYNAMICS: Linear momentum. Newton's 2nd law in its correct form. Kinetic energy. Connection between mass and energy. Relativistic formulas for elastic and inelastic collisions. Relation between the energy and the momentum of a particle. Acceleration due to a constant force.  
  
:'''1. előadás''' (Hudson-Nelson 715- 725 oldal):
+
:TEMPERATURE: Thermal equilibrium, thermal contact. The 0th law of thermodynamics. Temperature scales. Thermal expansion of solids and liquids. The ideal gas. Extensive and intensive state variables: volume, mass, pressure, temperature.
  
::A MÁGNESES ERŐTÉR (folytatás): Mágneses dipólusok. Alkalmazások A mágneses fluxus. Néhány megjegyzés a mértékegységekről
+
:HEAT AND THE 1ST LAW OF THERMODYNAMICS: Internal energy. Heat. Heat capacity, specific heat, molar specific heat. Latent heat. Work done on an ideal gas. The 1st law of thermodynamics. Adiabatic, isobaric, isovolumetric, isothermal processes.
  
:'''2. előadás''' (Hudson-Nelson 733- 744 oldal):
+
:THE KINETIC THEORY OF GASES: Relationship between microscopic and macroscopic quantities. Average molecular kinetic energy, pressure, temperature. Degrees of freedom. The equipartition of energy. Specific heat at constant volume and at constant pressure. The adiabatic process on a P-V diagram. Specific heat of solids: the Dulong-Petit law. The distribution of atmospheric density at constant temperature: the Boltzmann distribution. Distribution of molecular speeds in an ideal gas: the Maxwell-Boltzmann distribution. Collision frequency and mean free path.
  
::A MÁGNESES ERŐTÉR FORRÁSA: A Biot-Savart törvény. Az Ampere törvény.
+
:HEAT ENGINES, ENTROPY AND THE 2ND LAW OF THERMODYNAMICS: Heat engines. Thermal efficiency. The 2nd law (Kelvin-Planck formulation). Refrigerators and heat pumps. The coefficient of performance. The 2nd law (Clausius). Reversible and irreversible processes. The Carnot engine. Reduced heat. Entropy. The 2nd law (in terms of entropy change). Change in entropy for an ideal gas and reversible processes. Adiabatic free expansion. Irreversible heat transfer. Macrostates, microstates, thermodynamic probability. Connection between entropy and probability.

A lap jelenlegi, 2020. február 27., 14:17-kori változata

Tárgy adatok (2015. őszi félév)

  • A kurzus előadására feliratkozó hallgatóknak az angol nyelvű gyakorlatra kell jelentkezniük.

Ajánlott irodalom: Serway: Physics for Scientists and Engineers

Kiegészítő oktatási anyagok az érdeklődőknek

A tantárgy részletes tematikája

KINEMATICS: Motion in one dimension. Motion in two dimensions. Position vector. Average velocity, instantaneous velocity. Average acceleration, instantaneous acceleration. Position, velocity and acceleration in Cartesian and polar coordinates. Projectile motion. Circular motion. Curvilinear motion, tangential and radial accelerations.
THE LAWS OF MOTION: Inertial frames. Newton's laws. Force, mass. Normal force, tension, spring force, gravitational force, static and kinetic friction. Free body diagrams. The 1st cosmic speed.
WORK AND ENERGY: Work of a varying force. Kinetic energy and the work-energy theorem. Power.
POTENTIAL ENERGY: Work done by a spring. Work done by gravity. Work done by kinetic friction. Conservative and nonconservative forces. Potential energy. Conservation of mechanical energy. Changes in mechanical energy in the presence of nonconservative forces. Energy diagrams and the equilibrium of a system. The 2nd cosmic speed.
LINEAR MOMENTUM AND COLLISIONS: Linear momentum. Conservation of momentum. Elastic and inelastic collisions in 1D, 2D and 3D. Center of mass. Rocket propulsion.
ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS: Angular velocity vector, angular acceleration vector. Rotational kinetic energy. Moment of inertia. The parallel axis theorem. Torque. Work, power, energy.
ANGULAR MOMENTUM: Angular momentum of a particle and a system of particles. Conservation of angular momentum. Gyroscopes. Analogy between translational and rotation motion.
KEPLER'S LAWS OF PLANETARY MOTION.
STATIC EQUILIBRIUM: Conditions of equilibrium for a rigid object.
ACCELERATING FRAMES: Inertia forces: the translational inertia force, the centrifugal force, the Coriolis force, the Euler force. Discussion of motion in the rotating frame of the Earth.
OSCILLATORY MOTION: Simple harmonic motion, amplitude, phase constant, angular frequency. Mass attached to a spring. Energy of a simple harmonic oscillator. The simple pendulum. The physical pendulum. The torsional pendulum. Damped oscillations. Forced oscillations. Resonance.
WAVES: Transverse and longitudinal waves. Travelling waves in 1D. Reflection and transmission of waves. Sinusoidal waves, wavelength, period, wave number, angular frequency. The linear wave equation in 1D and in 3D. Spherical waves, plane waves. The Doppler effect, discussion using a spacetime diagram. Shock waves. Superposition and interference of sinusoidal waves. Standing waves: strings, air columns, membranes. Beats.
SPECIAL RELATIVITY, KINEMATICS: The concept of events and observers. The Galilean transformation. The isotropy of the speed of light in any inertial frame. Einstein's postulates. The synchronization of clocks. Spacetime intervals: timelike, lightlike and spacelike intervals. Minkowski diagrams and worldlines of particles and light. The relativity of simultaneity. Length contraction and proper length. Time dilation and proper time. Causality. The twins paradox, the rod-barn paradox, the two spaceships paradox. The paradox of the identically accelerated twins. The acoustic Doppler effect vs. the electromagnetic Doppler effect. Velocity transformation.
SPECIAL RELATIVITY, DYNAMICS: Linear momentum. Newton's 2nd law in its correct form. Kinetic energy. Connection between mass and energy. Relativistic formulas for elastic and inelastic collisions. Relation between the energy and the momentum of a particle. Acceleration due to a constant force.
TEMPERATURE: Thermal equilibrium, thermal contact. The 0th law of thermodynamics. Temperature scales. Thermal expansion of solids and liquids. The ideal gas. Extensive and intensive state variables: volume, mass, pressure, temperature.
HEAT AND THE 1ST LAW OF THERMODYNAMICS: Internal energy. Heat. Heat capacity, specific heat, molar specific heat. Latent heat. Work done on an ideal gas. The 1st law of thermodynamics. Adiabatic, isobaric, isovolumetric, isothermal processes.
THE KINETIC THEORY OF GASES: Relationship between microscopic and macroscopic quantities. Average molecular kinetic energy, pressure, temperature. Degrees of freedom. The equipartition of energy. Specific heat at constant volume and at constant pressure. The adiabatic process on a P-V diagram. Specific heat of solids: the Dulong-Petit law. The distribution of atmospheric density at constant temperature: the Boltzmann distribution. Distribution of molecular speeds in an ideal gas: the Maxwell-Boltzmann distribution. Collision frequency and mean free path.
HEAT ENGINES, ENTROPY AND THE 2ND LAW OF THERMODYNAMICS: Heat engines. Thermal efficiency. The 2nd law (Kelvin-Planck formulation). Refrigerators and heat pumps. The coefficient of performance. The 2nd law (Clausius). Reversible and irreversible processes. The Carnot engine. Reduced heat. Entropy. The 2nd law (in terms of entropy change). Change in entropy for an ideal gas and reversible processes. Adiabatic free expansion. Irreversible heat transfer. Macrostates, microstates, thermodynamic probability. Connection between entropy and probability.