„Kinematika - Változó mozgás” változatai közötti eltérés
A Fizipedia wikiből
9. sor: | 9. sor: | ||
== Feladat == | == Feladat == | ||
</noinclude><wlatex># Egy test a vizsgált időtartam első felében harmonikus rezgést végez, a második felében egyenletesen mozog. Mozgásának sebesség-idő grafikonja az alábbi ábrán látható. [[Kép:Kfgy1-1.2.22.gif|none|400px]] | </noinclude><wlatex># Egy test a vizsgált időtartam első felében harmonikus rezgést végez, a második felében egyenletesen mozog. Mozgásának sebesség-idő grafikonja az alábbi ábrán látható. [[Kép:Kfgy1-1.2.22.gif|none|400px]] | ||
− | #: a) | + | #: a) Írja fel a sebességet az idő függvényében mindkét tartományon! |
− | #: b) | + | #: b) Határozza meg a gyorsulás-idő függvényt képlettel! |
− | #: c) | + | #: c) Határozza meg az $x(t)$ függvényt, ha a test a $t=0\mathrm{s}$ időpillanatban az origóban volt!</wlatex><includeonly><wlatex></wlatex></includeonly><noinclude> |
== Megoldás == | == Megoldás == | ||
<wlatex>#: a) Az ábráról leolvasható a $v(t)$ függvény. $$v(t)=\left\{\begin{array}{ccc} v_{0}+v_{1}\cos(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ v_{0}+v_{1} & \mbox{ha} & 4\,\mathrm{s}<t\end{array}\right.\qquad\qquad v_{0}=3\,\mathrm{\frac{m}{s}}\qquad v_{1}=2\,\mathrm{\frac{m}{s}}\qquad \omega=\frac{\pi}{2}\frac{1}{\,\mathrm{s}}$$ | <wlatex>#: a) Az ábráról leolvasható a $v(t)$ függvény. $$v(t)=\left\{\begin{array}{ccc} v_{0}+v_{1}\cos(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ v_{0}+v_{1} & \mbox{ha} & 4\,\mathrm{s}<t\end{array}\right.\qquad\qquad v_{0}=3\,\mathrm{\frac{m}{s}}\qquad v_{1}=2\,\mathrm{\frac{m}{s}}\qquad \omega=\frac{\pi}{2}\frac{1}{\,\mathrm{s}}$$ |
A lap 2013. augusztus 27., 12:45-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Mozgástan |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Egy test a vizsgált időtartam első felében harmonikus rezgést végez, a második felében egyenletesen mozog. Mozgásának sebesség-idő grafikonja az alábbi ábrán látható.
- a) Írja fel a sebességet az idő függvényében mindkét tartományon!
- b) Határozza meg a gyorsulás-idő függvényt képlettel!
- c) Határozza meg az függvényt, ha a test a időpillanatban az origóban volt!
Megoldás
- a) Az ábráról leolvasható a függvény.
- b)
- c) ahol a periódusidő.