„Erőtan I. - 2.1.48” változatai közötti eltérés
A Fizipedia wikiből
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika gyakorlat 1. Kategória:Szerkesztő: Bácsi Ádám Kategória:Erőtan I. {{Kísérleti fizika gyakorlat | tárgynév …”) |
|||
2. sor: | 2. sor: | ||
[[Kategória:Kísérleti fizika gyakorlat 1.]] | [[Kategória:Kísérleti fizika gyakorlat 1.]] | ||
[[Kategória:Szerkesztő: Bácsi Ádám]] | [[Kategória:Szerkesztő: Bácsi Ádám]] | ||
− | [[Kategória:Erőtan I.]] | + | [[Kategória:Mechanika - Erőtan I.]] |
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika gyakorlat 1. | | tárgynév = Kísérleti fizika gyakorlat 1. | ||
− | | témakör = Erőtan I. | + | | témakör = Mechanika - Erőtan I. |
}} | }} | ||
== Feladat == | == Feladat == |
A lap 2013. április 22., 17:03-kori változata
Feladat
- Egy tömegű anyagi pontra alakú rugalmas erő hat. távolságban az erő nagysága . A kezdő időpontban és . Határozzuk meg a pont mozgását az idő függvényében!
Megoldás
- A rugóállandó szerint számolható ki. A tömegpont mozgásegyenlete A gyorsulás éppen az elmozdulás második időszerinti deriváltja, melyet szerint jelölünk. Így a mozgásegyenlet a differenciálegyenletre vezet, ahol bevezettük az körfrekvenciát. A differenciál egyenlet két független megoldása és , melyek mindketten egy harmonikus rezgőmozgást írnak le. A differenciálegyenlet lineáris, ezért az általános megoldás ezek tetszőleges lineáris kombinációjaként, azaz a sebesség pedig Az és együtthatókat a kezdeti feltételek segítségével határozhatjuk meg. Ezek alapján megadható a pont mozgása.