„Kinematika - 1.4.7” változatai közötti eltérés
A Fizipedia wikiből
17. sor: | 17. sor: | ||
<wlatex>#: a) A tömegpont helyvektora az alábbiak szerint határozható meg. $$\mathbf{r}(t)=\mathbf{r}_{0}+\int_{0}^{t}\mathbf{v}(t')dt'=\left(x_{0}+\frac{A}{\omega}-\frac{A}{\omega}\cos(\omega t)\right)\mathbf{i} +\left( y_{0}+\frac{B}{\omega}\cos\varphi- \frac{B}{\omega}\cos(\omega t+\varphi)\right)\mathbf{j}$$ | <wlatex>#: a) A tömegpont helyvektora az alábbiak szerint határozható meg. $$\mathbf{r}(t)=\mathbf{r}_{0}+\int_{0}^{t}\mathbf{v}(t')dt'=\left(x_{0}+\frac{A}{\omega}-\frac{A}{\omega}\cos(\omega t)\right)\mathbf{i} +\left( y_{0}+\frac{B}{\omega}\cos\varphi- \frac{B}{\omega}\cos(\omega t+\varphi)\right)\mathbf{j}$$ | ||
#: b) A gyorsulásvektor $$\mathbf{a}(t)=\frac{d\mathbf{v}}{dt}=A\omega\cos(\omega t)\mathbf{i} + B\omega\cos(\omega t+\varphi)\mathbf{j}\,.$$ | #: b) A gyorsulásvektor $$\mathbf{a}(t)=\frac{d\mathbf{v}}{dt}=A\omega\cos(\omega t)\mathbf{i} + B\omega\cos(\omega t+\varphi)\mathbf{j}\,.$$ | ||
− | #: c) Vezessük be az $\mathbf{r}(t)=(x(t),y(t))$ helyvektor komponensei helyett az $$X(t)=\frac{\omega}{A}\left(x(t)-x_{0}-\frac{A}{\omega}\right)\qquad \mbox{és}\qquad Y(t)=\frac{\omega}{B}\left(y(t)-y_{0}-\frac{B}{\omega}\cos\varphi\right)$$ változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolás és egy nyújtás kombinációjának felel meg. A helyvektor komponenseinek időfüggése alapján $$X(t)=-\cos(\omega t) \qquad \mbox{és} \qquad Y(t)=-\cos(\omega t)\cos\varphi + \sin(\omega t)\sin\varphi\,.$$ Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak $X(t)$ és $Y(t)$ hordozzák. $$X(t)^2-2X(t)Y(t)\cos\varphi+Y(t)^{2}=\sin^{2}\varphi$$ Ez az egyenlet határozza meg a test pályáját. Hogy pontosabban lássuk, hogy milyen pályáról van szó, vezesük be az $$U(t)=\frac{X(t)+Y(t)}{\sqrt{2}} \qquad \mbox{és} \qquad V(t)=\frac{X(t)-Y(t)}{\sqrt{2}}$$ változókat! Ez a transzformáció egy 45 fokos forgatásnak felel meg. Az új változókkal $$U(t)^2(1-\cos\varphi)+V(t)^{2}(1+\cos\varphi)=\sin^{2}\varphi$$ egy ellipszis | + | #: c) Vezessük be az $\mathbf{r}(t)=(x(t),y(t))$ helyvektor komponensei helyett az $$X(t)=\frac{\omega}{A}\left(x(t)-x_{0}-\frac{A}{\omega}\right)\qquad \mbox{és}\qquad Y(t)=\frac{\omega}{B}\left(y(t)-y_{0}-\frac{B}{\omega}\cos\varphi\right)$$ változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolás és egy nyújtás kombinációjának felel meg. A helyvektor komponenseinek időfüggése alapján $$X(t)=-\cos(\omega t) \qquad \mbox{és} \qquad Y(t)=-\cos(\omega t)\cos\varphi + \sin(\omega t)\sin\varphi\,.$$ Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak $X(t)$ és $Y(t)$ hordozzák. $$X(t)^2-2X(t)Y(t)\cos\varphi+Y(t)^{2}=\sin^{2}\varphi$$ Ez az egyenlet határozza meg a test pályáját. Hogy pontosabban lássuk, hogy milyen pályáról van szó, vezesük be az $$U(t)=\frac{X(t)+Y(t)}{\sqrt{2}} \qquad \mbox{és} \qquad V(t)=\frac{X(t)-Y(t)}{\sqrt{2}}$$ változókat! Ez a transzformáció egy 45 fokos forgatásnak felel meg. Az új változókkal az $$U(t)^2(1-\cos\varphi)+V(t)^{2}(1+\cos\varphi)=\sin^{2}\varphi$$ egyenletre jutunk. Érdemes megvizsgálni az egyenletet különböző $\varphi$ értékek esetén. Ha $\sin\varphi=0$ (ez lehetséges $\varphi=n\pi$ esetén, ahol $n$ tetszőleges egész szám), akkor a pálya egyenlete egy egyenes menti harmonikus rezgőmozgást ír le. Ha $\cos\varphi=0$ (ez lehetséges $\varphi=n\pi+\pi/2$ esetén), akkor a pálya egyenlete egy körmozgást ír le. A visszatranszformálás során azonban a valódi térbeli mozgásra csak akkor kapunk körmozgást, ha $A=B$. Minden egyéb esetben a test pályája egy ellipszis. |
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. szeptember 25., 10:03-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Mozgástan |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- (1.4.7) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: .
- a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a időpontban a test az koordinátájú pontban tartózkodott!
- b) Határozza meg a test gyorsulásvektorát az idő függvényében!
- c) Milyen pályán mozog a test?
Megoldás
- a) A tömegpont helyvektora az alábbiak szerint határozható meg.
- b) A gyorsulásvektor
- c) Vezessük be az helyvektor komponensei helyett az változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolás és egy nyújtás kombinációjának felel meg. A helyvektor komponenseinek időfüggése alapján Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak és hordozzák. Ez az egyenlet határozza meg a test pályáját. Hogy pontosabban lássuk, hogy milyen pályáról van szó, vezesük be az változókat! Ez a transzformáció egy 45 fokos forgatásnak felel meg. Az új változókkal az egyenletre jutunk. Érdemes megvizsgálni az egyenletet különböző értékek esetén. Ha (ez lehetséges esetén, ahol tetszőleges egész szám), akkor a pálya egyenlete egy egyenes menti harmonikus rezgőmozgást ír le. Ha (ez lehetséges esetén), akkor a pálya egyenlete egy körmozgást ír le. A visszatranszformálás során azonban a valódi térbeli mozgásra csak akkor kapunk körmozgást, ha . Minden egyéb esetben a test pályája egy ellipszis.