„Integrálás - Időfüggvények” változatai közötti eltérés
A Fizipedia wikiből
7. sor: | 7. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># #: a) Az alábbi határozott integrál a változó felső $v$ határ miatt annak függvénye: $$I(v)=\int_{0}^{v}\frac{1}{1-\alpha v'}dv'=t$$ és egyenlő a $t$ időváltozóval. Határozzuk meg a $v(t)$ függvényt!</wlatex><includeonly><wlatex>{{Végeredmény|content=a) $v(t)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right)$}}</wlatex></includeonly><noinclude> | + | </noinclude><wlatex># |
+ | #: a) Az alábbi határozott integrál a változó felső $v$ határ miatt annak függvénye: $$I(v)=\int_{0}^{v}\frac{1}{1-\alpha v'}dv'=t$$ és egyenlő a $t$ időváltozóval. Határozzuk meg a $v(t)$ függvényt!</wlatex><includeonly><wlatex>{{Végeredmény|content=a) $v(t)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right)$}}</wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == | ||
<wlatex>#: a) $$t=\left[-\frac{1}{\alpha}\ln\left(1-\alpha v'\right)\right]^{v}_{0}$$ $$-\alpha t=\ln(1-\alpha v)-\underbrace{\ln 1}_{0}$$ $$e^{-\alpha t}=1-\alpha v$$ $$v(t)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right)$$</wlatex> | <wlatex>#: a) $$t=\left[-\frac{1}{\alpha}\ln\left(1-\alpha v'\right)\right]^{v}_{0}$$ $$-\alpha t=\ln(1-\alpha v)-\underbrace{\ln 1}_{0}$$ $$e^{-\alpha t}=1-\alpha v$$ $$v(t)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right)$$</wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. március 28., 15:07-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Integrálás |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
-
- a) Az alábbi határozott integrál a változó felső határ miatt annak függvénye: és egyenlő a időváltozóval. Határozzuk meg a függvényt!
Megoldás
- a)