„Kinematika - Változó mozgás” változatai közötti eltérés
A Fizipedia wikiből
16. sor: | 16. sor: | ||
#: b) $$a(t)=\frac{dv}{dt}=\left\{\begin{array}{ccc} -v_{1}\omega\sin(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ 0 & \mbox{ha} & 4\,\mathrm{s}<t\end{array}\right.$$ | #: b) $$a(t)=\frac{dv}{dt}=\left\{\begin{array}{ccc} -v_{1}\omega\sin(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ 0 & \mbox{ha} & 4\,\mathrm{s}<t\end{array}\right.$$ | ||
#: c) $$x(t)=x(0)+\int_{0}^{t}v(t')dt'=\left\{\begin{array}{ccc} v_{0}+\frac{v_{1}}{\omega}\sin(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ | #: c) $$x(t)=x(0)+\int_{0}^{t}v(t')dt'=\left\{\begin{array}{ccc} v_{0}+\frac{v_{1}}{\omega}\sin(\omega t) & \mbox{ha} & 0<t<4\,\mathrm{s} \\ | ||
− | (v_{0}+v_{1})t | + | (v_{0}+v_{1})t+v_{0}T & \mbox{ha} & 4\,\mathrm{s}<t\end{array}\right.\,$$ ahol $T=2\pi/\omega=4\,\mathrm{s}$ a periódusidő. |
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. szeptember 25., 09:28-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Mozgástan |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Egy test a vizsgált időtartam első felében harmonikus rezgést végez, a második felében egyenletesen mozog. Mozgásának sebesség-idő grafikonja az alábbi ábrán látható.
- a) Írja fel a sebességet az idő függvényében mindkét tartományon!
- b) Határozza meg a gyorsulás-idő függvényt képlettel!
- c) Határozza meg az függvényt, ha a test a időpillanatban az origóban volt!
Megoldás
- a) Az ábráról leolvasható a függvény.
- b)
- c) ahol a periódusidő.