„Kinematika - 1.4.7” változatai közötti eltérés
A Fizipedia wikiből
(→Feladat) |
|||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># (1.4.7) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: $\mathbf{v}(t)=A\sin(\omega t)\mathbf{i} + B\sin(\omega t+\varphi)\mathbf{j}$. | + | </noinclude><wlatex># (*1.4.7) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: $\mathbf{v}(t)=A\sin(\omega t)\mathbf{i} + B\sin(\omega t+\varphi)\mathbf{j}$. |
#: a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a $t=0\,s$ időpontban a test az $\mathbf{r}_{0}=x_{0}\mathbf{i} + y_{0}\mathbf{j}$ koordinátájú pontban tartózkodott! | #: a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a $t=0\,s$ időpontban a test az $\mathbf{r}_{0}=x_{0}\mathbf{i} + y_{0}\mathbf{j}$ koordinátájú pontban tartózkodott! | ||
#: b) Határozza meg a test gyorsulásvektorát az idő függvényében! | #: b) Határozza meg a test gyorsulásvektorát az idő függvényében! |
A lap 2014. január 9., 15:19-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Mozgástan |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- (*1.4.7) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: .
- a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a időpontban a test az koordinátájú pontban tartózkodott!
- b) Határozza meg a test gyorsulásvektorát az idő függvényében!
- c) Milyen pályán mozog a test, ha valamilyen egész számmal?
Megoldás
- a) A tömegpont helyvektora az alábbiak szerint határozható meg.
- b) A gyorsulásvektor
- c) Vezessük be az helyvektor komponensei helyett az változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolásnak felel meg. A helyvektor komponenseinek időfüggése alapján Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak és hordozzák. Ez az egyenlet határozza meg a test pályáját. A feladatban csak a eseteket kell vizsgálni, ahol egy egész szám. Ha páros, akkor és , vagyis a pálya egyenlete alakban írható. Tovább alakítva egyenletet kapunk, vagyis a pálya egyenlete egy egyenes menti harmonikus rezgőmozgást ír le.
Ha páratlan, akkor és a értékeket veheti fel, mindkét esetben . A pálya egyenlete ekkor alakban írható. Amennyiben , az egyenlet egy körmozgást ír le. Egyéb esetekben a test egy ellipszis pályán mozog.