„Erőtan I. - 2.4.4” változatai közötti eltérés
A Fizipedia wikiből
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika gyakorlat 1. Kategória:Szerkesztő: Bácsi Ádám Kategória:Erőtan I. {{Kísérleti fizika gyakorlat | tárgynév …”) |
|||
2. sor: | 2. sor: | ||
[[Kategória:Kísérleti fizika gyakorlat 1.]] | [[Kategória:Kísérleti fizika gyakorlat 1.]] | ||
[[Kategória:Szerkesztő: Bácsi Ádám]] | [[Kategória:Szerkesztő: Bácsi Ádám]] | ||
− | [[Kategória:Erőtan I.]] | + | [[Kategória:Mechanika - Erőtan I.]] |
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika gyakorlat 1. | | tárgynév = Kísérleti fizika gyakorlat 1. | ||
− | | témakör = Erőtan I. | + | | témakör = Mechanika - Erőtan I. |
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># Egy $5 \,\mathrm{m}$ hosszú fonálon függő $2,5 \,\mathrm{kg}$ tömegű fémgömb egy motor tengelyére van szerelve.(2.4.4. ábra) Mekkora a fonalat feszítő erő ($F_{f}$) és mekkora szöggel hajlik ki az inga a függőlegestől, ha a motor fordulatszáma $n=\frac{72}{\,\mathrm{perc}}$ és feltesszük, hogy a fonál nem csavarodik meg a mozgás során? | + | </noinclude><wlatex># ÁBRA Egy $5 \,\mathrm{m}$ hosszú fonálon függő $2,5 \,\mathrm{kg}$ tömegű fémgömb egy motor tengelyére van szerelve.(2.4.4. ábra) Mekkora a fonalat feszítő erő ($F_{f}$) és mekkora szöggel hajlik ki az inga a függőlegestől, ha a motor fordulatszáma $n=\frac{72}{\,\mathrm{perc}}$ és feltesszük, hogy a fonál nem csavarodik meg a mozgás során? |
</wlatex><includeonly><wlatex>{{Útmutatás|content= Az együtt forgó rendszerben vizsgáljuk meg az erőviszonyokat!}}{{Végeredmény|content= $\alpha=88^{\circ}$}}</wlatex></includeonly><noinclude> | </wlatex><includeonly><wlatex>{{Útmutatás|content= Az együtt forgó rendszerben vizsgáljuk meg az erőviszonyokat!}}{{Végeredmény|content= $\alpha=88^{\circ}$}}</wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == | ||
− | <wlatex>#: Először számoljuk át a fordulatszámot körfrekvenciára. $$\omega=2,4\pi\frac{1}{\,\mathrm{s}}$$ | + | <wlatex>#: Először számoljuk át a fordulatszámot körfrekvenciára. $$\omega=2,4\pi\frac{1}{\,\mathrm{s}}$$ A fémgömbben együtt forgó vonatkoztatási rendszerben a rá ható erőket az ábrán ábrázoltuk. |
− | A fémgömbben együtt forgó vonatkoztatási rendszerben a rá ható erőket az | + | |
ÁBRA | ÁBRA | ||
Ebben a rendszerben a fémgömb nyugalomban van, ezért $$K\sin\alpha=F_{cf}\qquad\mbox{és}\qquad K\cos\alpha=F_{g}\,.$$ $$F_{cf}=m\omega^{2}l\sin\alpha\qquad\qquad F_{g}=mg$$ Ezek alapján $$K=m\omega^{2}l=72\pi^{2}\,\mathrm{N}$$ és $$\alpha=\arccos\left(\frac{g}{\omega^{2}l}\right)=88^{\circ}$$ | Ebben a rendszerben a fémgömb nyugalomban van, ezért $$K\sin\alpha=F_{cf}\qquad\mbox{és}\qquad K\cos\alpha=F_{g}\,.$$ $$F_{cf}=m\omega^{2}l\sin\alpha\qquad\qquad F_{g}=mg$$ Ezek alapján $$K=m\omega^{2}l=72\pi^{2}\,\mathrm{N}$$ és $$\alpha=\arccos\left(\frac{g}{\omega^{2}l}\right)=88^{\circ}$$ | ||
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. április 22., 19:16-kori változata
Feladat
- ÁBRA Egy hosszú fonálon függő tömegű fémgömb egy motor tengelyére van szerelve.(2.4.4. ábra) Mekkora a fonalat feszítő erő () és mekkora szöggel hajlik ki az inga a függőlegestől, ha a motor fordulatszáma és feltesszük, hogy a fonál nem csavarodik meg a mozgás során?
Megoldás
- Először számoljuk át a fordulatszámot körfrekvenciára. A fémgömbben együtt forgó vonatkoztatási rendszerben a rá ható erőket az ábrán ábrázoltuk.
ÁBRA
Ebben a rendszerben a fémgömb nyugalomban van, ezért Ezek alapján és