Kinematika - 1.4.7
A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Werner (vitalap | szerkesztései) 2014. szeptember 23., 19:29-kor történt szerkesztése után volt.
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Mozgástan |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- (*1.4.7 alapján) Egy síkban mozgó pontszerűnek tekinthető test sebességvektorát az alábbi összefüggés írja le: .
- a) Írja fel a tömegpont helyvektorát mint az idő függvényét, ha a időpontban a test az koordinátájú pontban tartózkodott!
- b) Határozza meg a test gyorsulásvektorát az idő függvényében!
- c) Milyen pályán mozog a test, ha valamilyen egész számmal?
- d) Amennyiben , úgy adjuk meg a pálya görbületi sugarát a időponthoz tartozó helyen.
Megoldás
- a) A tömegpont helyvektora az alábbiak szerint határozható meg.
- b) A gyorsulásvektor
- c) Vezessük be az helyvektor komponensei helyett az változókat a rövidebb jelölés érdekében! Ez a transzformáció egy eltolásnak felel meg. A helyvektor komponenseinek időfüggése alapján Az egyenletek átrendezhetők olyan formába, amelyben az időfüggést már csak és hordozzák. Ez az egyenlet határozza meg a test pályáját. A feladatban csak a eseteket kell vizsgálni, ahol egy egész szám. Ha páros, akkor és , vagyis a pálya egyenlete alakban írható. Tovább alakítva egyenletet kapunk, vagyis a pálya egyenlete egy egyenes menti harmonikus rezgőmozgást ír le.
Ha páratlan, akkor és a értékeket veheti fel, mindkét esetben . A pálya egyenlete ekkor alakban írható. Amennyiben , az egyenlet egy körmozgást ír le. Egyéb esetekben a test egy ellipszis pályán mozog. - d) Ha , úgy a kezdeti sebességvektor , a kezdeti gyorsulásvektor pedig . Ezek láthatóan merőlegesek egymásra, így a görbületi sugarat nagyon egyszerűen meg tudjuk adni: