Kinematika - 1.3.1

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Bacsi (vitalap | szerkesztései) 2013. augusztus 27., 21:02-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Mozgástan
Feladatok listája:
  1. Kinematika - 1.1.7
  2. Kinematika - 1.2.6
  3. Kinematika - 1.2.8
  4. Kinematika - 1.3.1
  5. Kinematika - Változó mozgás
  6. Kinematika - 1.3.8
  7. Kinematika - 1.4.6
  8. Kinematika - 1.4.7
  9. Kinematika - 1.4.10
  10. Kinematika - 1.4.17
  11. Kinematika - 1.4.18
  12. Kinematika - 1.4.20
  13. Kinematika - 1.4.23
  14. Kinematika - Ferde hajítás
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (1.3.1) Az \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% tengelyen mozgó tömegpont gyorsulása az idő függvényében az 1.3.1. ábrán látható.
    a) Ábrázolja a tömegpont sebességét az idő függvényében, ha a kezdeti sebesség \setbox0\hbox{$v_{0}=10 \,\mathrm{m/s}$}% \message{//depth:\the\dp0//}% \box0%!
    b) Határozza meg a tömegpont helyét a \setbox0\hbox{$t=1 \,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$t=3 \,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% időpillanatokban, ha a tömegpont \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0%-ban az \setbox0\hbox{$x=0$}% \message{//depth:\the\dp0//}% \box0% pontban volt!
    c) Mekkora a tömegpont átlagsebessége a \setbox0\hbox{$t=1 \,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% és a \setbox0\hbox{$t=3 \,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% közötti időintervallumban?

Megoldás

  1. a) A feladatot az ábrán jelzett idő intervallumokon külön kell megoldani.
    Kfgy1 1.3.1M.gif
    Itt az első két intervallumon történő számolást mutatjuk be. Az első intervallum \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0%-tól \setbox0\hbox{$t=2\,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0%-ig tart. Ezen a szakaszon \setbox0\hbox{$a_{1}=-4\,\mathrm{\frac{m}{s^{2}}}$}% \message{//depth:\the\dp0//}% \box0%, \setbox0\hbox{$v(t=0)=v_{0}=10 \,\mathrm{m/s}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$x(t=0)=0$}% \message{//depth:\the\dp0//}% \box0%. A gyorsulás alapján a sebesség
    \[v(0<t<2\,\mathrm{s})=v(0)+\int_{0}^{t}a(t')dt'=v_{0}+a_{1}t\]
    szerint függ az időtől, melyet egy egyenes szakasszal ábrázolhatunk a sebesség-idő grafikonon. A hely idő függését az alábbiak szerint adhatjuk meg.
    \[x(0<t<2\,\mathrm{s})=\underbrace{x(0)}_{0}+\int_{0}^{t}v(t')dt'=v_{0}t+\frac{a_{1}}{2}t^{2}\]
    Ezek alapján az idő intervallum végén, vagyis a \setbox0\hbox{$t=2\,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% időpontban
    \[v_{1}=v(t=2\,\mathrm{s})=2\,\mathrm{\frac{m}{s}}\qquad\qquad \mbox{és}\qquad\qquad x_{1}=x(t=2)=12\,\mathrm{m}\,.\]
    Ezek az adatok jelentik a következő idő intervallum kezdeti feltételeit. A második intervallumon (\setbox0\hbox{$2\,\mathrm{s}<t<5\,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0%) \setbox0\hbox{$a_{2}=-2\,\mathrm{\frac{m}{s^{2}}}$}% \message{//depth:\the\dp0//}% \box0%. Az első szakaszhoz hasonlóan
    \[v(2\,\mathrm{s}<t<5\,\mathrm{s})=v(t=2\,\mathrm{s})+\int_{2\,\mathrm{s}}^{t}a(t')dt'=v_{1}+a_{2}(t-2\,\mathrm{s})\]
    \[x(2\,\mathrm{s}<t<5\,\mathrm{s})=x(t=2\,\mathrm{s})+\int_{2\,\mathrm{s}}^{t}v(t')dt'=x_{1}+v_{1}(t-2\,\mathrm{s})+\frac{a_{2}}{2}(t-2s)^{2}\,.\]
    A többi idő intervallumon ugyanezeket a lépéseket kell megismételni. A kapott sebesség-idő grafikont az 1.3.1M ábrán láthatjuk.
    Kfgy1 1.3.1.gif
    b) Az a) rész eredményei alapján
    \[x(t=1\,\mathrm{s})=8\,\mathrm{m}\qquad\mbox{és}\qquad x(t=3\,\mathrm{s})=13\,\mathrm{m}\,.\]
    c) Az átlag sebesség a \setbox0\hbox{$1\,\mathrm{s}<t<3\,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% intervallumon
    \[v_{\mbox{átl}}=\frac{x(t=3\,\mathrm{s})-x(t=1\,\mathrm{s})}{3\,\mathrm{s}-1\,\mathrm{s}}=2,5\,\mathrm{\frac{m}{s}}\,.\]