Erőtan I. - Harmonikus rezgés gravitációs térben

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Werner (vitalap | szerkesztései) 2014. szeptember 30., 19:39-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Erőtan I.
Feladatok listája:
  1. Erőtan I. - 2.1.2
  2. Erőtan I. - 2.1.4
  3. Erőtan I. - 2.1.7
  4. Erőtan I. - 2.1.9
  5. Erőtan I. - 2.1.14
  6. Erőtan I. - 2.1.16
  7. Erőtan I. - 2.1.26
  8. Erőtan I. - 2.1.30
  9. Erőtan I. - 2.1.35
  10. Erőtan I. - 2.1.38
  11. Erőtan I. - 2.1.48
  12. Erőtan I. - 2.3.1
  13. Erőtan I. - 2.4.1
  14. Erőtan I. - 2.4.4
  15. Erőtan I. - 2.4.7
  16. Erőtan I. - Harmonikus rezgés gravitációs térben
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Egy \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% direkciós erejű rugó egyik végét a plafonhoz rögzítettük, másik végére pedig \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű testet kötöttünk, amihez egy további fonalállal egy másik, szintén \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű testet kötöttünk.
    a.) Mekkora a rugó megnyúlása egyensúlyi helyzetben?
    b.) Kicsit kitérítve az egyensúlyi helyzetből, mekkora lesz a kialakuló rezgés körfrekvenciája?
    Legyen ismét egyensúlyban a rendszer. Ekkor elvágjuk a fonalat.
    c.) Hol lesz az a rendszer új egyensúlyi helyzete?
    d.) Mekkora lesz az új körfrekvencia?
    e.) Mekkora amplitudójú rezgést végez a megmaradt test?
    f.) Adjuk meg a rezgés kitérés-idő függvényét!

Rugo levag.svg

Megoldás

  1. A megoldás elhangzott a gyakorlaton. Hamarosan ide is felkerül.