„Deriválás - Szélsőértékek” változatai közötti eltérés
A Fizipedia wikiből
(egy szerkesztő egy közbeeső változata nincs mutatva) | |||
1. sor: | 1. sor: | ||
<noinclude> | <noinclude> | ||
[[Kategória:Kísérleti fizika gyakorlat 1.]] | [[Kategória:Kísérleti fizika gyakorlat 1.]] | ||
− | [[Kategória:Szerkesztő: | + | [[Kategória:Szerkesztő: Bácsi Ádám]] |
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika gyakorlat 1. | | tárgynév = Kísérleti fizika gyakorlat 1. | ||
7. sor: | 7. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex> | + | </noinclude><wlatex># Tekintsük az alábbi, valós számokon értelmezett függvényt: |
− | # Tekintsük az alábbi, valós számokon értelmezett függvényt: | + | |
#: $$f(x) = 2 x^3 - 3 x^2 - 36 x + 12$$ | #: $$f(x) = 2 x^3 - 3 x^2 - 36 x + 12$$ | ||
#: Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?</wlatex><includeonly></includeonly><noinclude> | #: Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?</wlatex><includeonly></includeonly><noinclude> |
A lap jelenlegi, 2014. szeptember 9., 11:16-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Deriválás |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Tekintsük az alábbi, valós számokon értelmezett függvényt:
- Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?
Megoldás
- Határozzuk meg a függvény első deriváltját!
- Egy lokális szélsőértéknél ez nulla kell legyen. Megoldva a másodfokú egyenletet:
- Határozzuk meg a második deriváltat!
- Ez az -nál , pozitív, azaz itt lokális minimuma van a függvénynek.
- Az pontban a második derivált értéke , negatív, itt lokális maximuma van a függvénynek.