„Deriválás - Alapműveletek vektorokkal” változatai közötti eltérés
A Fizipedia wikiből
(egy szerkesztő 3 közbeeső változata nincs mutatva) | |||
1. sor: | 1. sor: | ||
<noinclude> | <noinclude> | ||
[[Kategória:Kísérleti fizika gyakorlat 1.]] | [[Kategória:Kísérleti fizika gyakorlat 1.]] | ||
− | [[Kategória:Szerkesztő:Bácsi Ádám]] | + | [[Kategória:Szerkesztő: Bácsi Ádám]] |
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika gyakorlat 1. | | tárgynév = Kísérleti fizika gyakorlat 1. | ||
15. sor: | 15. sor: | ||
#: d) Adjuk meg a $\mathbf{v}_{1}$ vektor $\mathbf{v}_{2}$ irányába eső komponensét!</wlatex><includeonly></includeonly><noinclude> | #: d) Adjuk meg a $\mathbf{v}_{1}$ vektor $\mathbf{v}_{2}$ irányába eső komponensét!</wlatex><includeonly></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == | ||
− | <wlatex> | + | <wlatex>#: a) $$ 3\mathbf{v}_{1}-2\mathbf{v}_{2}= 3 \left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right]- |
− | #: a) $$ 3\mathbf{v}_{1}-2\mathbf{v}_{2}= 3 \left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array}\right]- | + | |
2 \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]= \left[\begin{array}{c} 3 \\ 6 \\ -3 \end{array}\right]- | 2 \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]= \left[\begin{array}{c} 3 \\ 6 \\ -3 \end{array}\right]- | ||
\left[\begin{array}{c} 0 \\ 2 \\ 2 \end{array}\right]= \left[\begin{array}{c} 3 \\ 4 \\ -5 \end{array}\right]$$ | \left[\begin{array}{c} 0 \\ 2 \\ 2 \end{array}\right]= \left[\begin{array}{c} 3 \\ 4 \\ -5 \end{array}\right]$$ | ||
#: b) $$|\mathbf{v}_{1}|^{2}=1^{2}+2^{2}+(-1)^{2}=6\qquad\Rightarrow\qquad |\mathbf{v}_{1}|=\sqrt{6}$$$$|\mathbf{v}_{2}|^{2}=0^{2}+1^{2}+1^{2}=2\qquad\Rightarrow\qquad |\mathbf{v}_{2}|=\sqrt{2}$$ | #: b) $$|\mathbf{v}_{1}|^{2}=1^{2}+2^{2}+(-1)^{2}=6\qquad\Rightarrow\qquad |\mathbf{v}_{1}|=\sqrt{6}$$$$|\mathbf{v}_{2}|^{2}=0^{2}+1^{2}+1^{2}=2\qquad\Rightarrow\qquad |\mathbf{v}_{2}|=\sqrt{2}$$ | ||
#: c) Bármely két vektor esetén $$\mathbf{v}_{1}\cdot\mathbf{v}_{2}=|\mathbf{v}_{1}||\mathbf{v}_{2}|\cos\alpha\,,$$ ahol $\cdot$ a vektorok skaláris szorzását jelöli és $\alpha$ a két vektor által bezárt szög. Ebben a feladatban $$\mathbf{v}_{1}\cdot\mathbf{v}_{2}=1\cdot 0+ 2\cdot 1+ -1\cdot 1=1\,,$$ tehát $$1=\sqrt{6}\sqrt{2}\cos\alpha\qquad\Rightarrow\qquad \alpha=73,2\,^{\circ}$$ | #: c) Bármely két vektor esetén $$\mathbf{v}_{1}\cdot\mathbf{v}_{2}=|\mathbf{v}_{1}||\mathbf{v}_{2}|\cos\alpha\,,$$ ahol $\cdot$ a vektorok skaláris szorzását jelöli és $\alpha$ a két vektor által bezárt szög. Ebben a feladatban $$\mathbf{v}_{1}\cdot\mathbf{v}_{2}=1\cdot 0+ 2\cdot 1+ -1\cdot 1=1\,,$$ tehát $$1=\sqrt{6}\sqrt{2}\cos\alpha\qquad\Rightarrow\qquad \alpha=73,2\,^{\circ}$$ | ||
− | #: d) A $\mathbf{v}_{2}$ vektor irányába mutató egység vektor $$\mathbf{n}_{2}=\frac{\mathbf{v}_{2}}{|\mathbf{v}_{2}|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]\,.$$ Ezzel az egységvektorral a $\mathbf{v}_{1}$ vektor $\mathbf{n}_{2}$ irányába mutató komponense $$\mathbf{v}_{12}=\mathbf{n}_{2}(\mathbf{n}_{2}\cdot\mathbf{v}_{1})=\frac{1}{2}\left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]\,.$$ | + | #: d) A $\mathbf{v}_{2}$ vektor irányába mutató egység vektor $$\mathbf{n}_{2}=\frac{\mathbf{v}_{2}}{|\mathbf{v}_{2}|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]\,.$$ Ezzel az egységvektorral a $\mathbf{v}_{1}$ vektor $\mathbf{n}_{2}$ irányába mutató komponense $$\mathbf{v}_{12}=\mathbf{n}_{2}(\mathbf{n}_{2}\cdot\mathbf{v}_{1})=\frac{1}{2}\left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right]\,.$$</wlatex></noinclude> |
− | </wlatex> | + | |
− | </noinclude> | + |
A lap jelenlegi, 2013. szeptember 11., 08:41-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Deriválás |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Adottak az alábbi vektorok.
- a) Határozzuk meg az vektort!
- b) Mekkora a vektorok normája (nagysága)?
- c) Mekkora szöget zár be a két vektor?
- d) Adjuk meg a vektor irányába eső komponensét!
Megoldás
- a)
- b)
- c) Bármely két vektor esetén ahol a vektorok skaláris szorzását jelöli és a két vektor által bezárt szög. Ebben a feladatban tehát
- d) A vektor irányába mutató egység vektor Ezzel az egységvektorral a vektor irányába mutató komponense