„Mechanika - Rezgő merev rúd feszültségállapota” változatai közötti eltérés

A Fizipedia wikiből
8. sor: 8. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex># (5.15.) feladat szövege</wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel a Newton-féle mozgásegyenletet a rúd egy kis $dx$ hosszúságú darabjára!}}{{Végeredmény|content=Mivel a test merev, a gyorsulás független a helytől, ezért a mechanikai feszültség csak lineárisan változhat. A rúd végein a feszültség és a keresztmetszet szorzata egyenlő kell legyen az (időfüggő!) rugóerőkkel.}}</wlatex></includeonly><noinclude>
+
</noinclude><wlatex># (5.15.)* Egy $\rho$ sűrűségű, $A$ keresztmetszetű és $l$ hosszúságú homogén merev rudat az ábra szerint két rugó közé teszünk. A rúd a rugók egyenesében rezeghet, például egy súrlódásmentes csőben. Bizonyítsuk be, hogy a mechnaikai feszültség a rúd mentén lineárisan változik és tetszőleges helyen nézve rezgést végez. Hol van mindenkor feszültségmentes keresztmetszet, és hol vannak szélsőértékek a feszültségben?[[Kép:Kfgy1-5-15.svg|none|250px]]</wlatex><includeonly><wlatex>{{Útmutatás|content=Írjuk fel a Newton-féle mozgásegyenletet a rúd egy kis $dx$ hosszúságú darabjára!}}{{Végeredmény|content=Mivel a test merev, a gyorsulás független a helytől, ezért a mechanikai feszültség csak lineárisan változhat. A rúd végein a feszültség és a keresztmetszet szorzata egyenlő kell legyen az (időfüggő!) rugóerőkkel.}}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==
 
<wlatex>megoldás szövege</wlatex>
 
<wlatex>megoldás szövege</wlatex>
 
</noinclude>
 
</noinclude>

A lap 2014. január 7., 13:17-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Rugalmasság, folyadékok
Feladatok listája:
  1. Tengerbe lógatott drótkötél
  2. Fémhuzal önsúllyal
  3. Rugalmas energia sűrűsége
  4. Rezgő merev rúd feszültségállapota
  5. Rétegezett folyadékok
  6. Vízbe merített farúd
  7. Medencefal terhelése
  8. Fagolyó vízcsőben
  9. Forgó folyadék felszíne
  10. Folyadékóra
  11. Kifolyás sebessége
  12. Lamináris áramlás
  13. Jegesmedve jégtáblán
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (5.15.)* Egy \setbox0\hbox{$\rho$}% \message{//depth:\the\dp0//}% \box0% sűrűségű, \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% keresztmetszetű és \setbox0\hbox{$l$}% \message{//depth:\the\dp0//}% \box0% hosszúságú homogén merev rudat az ábra szerint két rugó közé teszünk. A rúd a rugók egyenesében rezeghet, például egy súrlódásmentes csőben. Bizonyítsuk be, hogy a mechnaikai feszültség a rúd mentén lineárisan változik és tetszőleges helyen nézve rezgést végez. Hol van mindenkor feszültségmentes keresztmetszet, és hol vannak szélsőértékek a feszültségben?
    Kfgy1-5-15.svg

Megoldás

megoldás szövege