Deriválás - Egyszerű deriváltak

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Bacsi (vitalap | szerkesztései) 2013. szeptember 10., 19:21-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Deriválás
Feladatok listája:
  1. Alapműveletek vektorokkal
  2. Vektorok felbontása
  3. Egyszerű deriváltak
  4. Inverz függvény deriváltja
  5. Hiperbolikus függvények
  6. Szélsőértékek
  7. Egyvátozós vektorfüggvény
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Határozzuk meg az alábbi függvények első deriváltját! Az f) feladatrészben a második deriváltat is számoljuk ki!
    a) \setbox0\hbox{$f(x)=x^{2}+3x$}% \message{//depth:\the\dp0//}% \box0%
    b) \setbox0\hbox{$x(t)=x_{0}\cos(\omega t)$}% \message{//depth:\the\dp0//}% \box0%
    c) \setbox0\hbox{$A(\omega)=\frac{\omega}{1+(\tau\omega)^{2}}$}% \message{//depth:\the\dp0//}% \box0%
    d) \setbox0\hbox{$h(x)=\sin\left[\ln\left(\cos(3x)\right)\right]$}% \message{//depth:\the\dp0//}% \box0%
    e) \setbox0\hbox{$g(x)=\ln\left(e^{\sin x}+x\right)$}% \message{//depth:\the\dp0//}% \box0%
    f) \setbox0\hbox{$y(t)=Ae^{-\lambda t}\cos(\omega t-\varphi)$}% \message{//depth:\the\dp0//}% \box0%

Megoldás

  1. a)
    \[\frac{df}{dx}=2x+3\]
    b)
    \[\frac{dx}{dt}=-x_{0}\omega\sin(\omega t)\]
    c)
    \[\frac{dA}{d\omega}=\frac{1+(\tau\omega)^{2}-\omega\cdot 2\tau^{2}\omega}{\left(1+(\tau\omega)^{2}\right)^{2}}=\frac{1-(\tau\omega)^{2}}{\left(1+(\tau\omega)^{2}\right)^{2}}\]
    d)
    \[\frac{dh}{dx}=\cos\left[\ln\left(\cos(3x)\right)\right]\cdot\frac{d}{dx}\left[\ln\left(\cos(3x)\right)\right]=\cos\left[\ln\left(\cos(3x)\right)\right]\frac{1}{\cos(3x)}\cdot\frac{d}{dx}\cos(3x)=\]
    \[=-3\,\mbox{tg}\,(3x)\cos\left[\ln\left(\cos(3x)\right)\right]\]
    e)
    \[\frac{dg}{dx}=\frac{e^{\sin x}\cos x+1}{e^{\sin x}+x}\]
    f)
    \[\dot{y}=\frac{dy}{dt}=-Ae^{-\lambda t}\left[\lambda\cos(\omega t-\varphi)+\omega\sin(\omega t-\varphi)\right]\]
    \[\ddot{y}=\frac{d^{2}y}{dt^{2}}=Ae^{-\lambda t}\left[(\lambda^{2}-\omega^{2})\cos(\omega t-\varphi)+2\lambda\omega\sin(\omega t-\varphi)\right]\]
    Könnyen belátható, hogy
    \[\ddot{y}+2\lambda\dot{y}+(\omega^{2}+\lambda^{2})y=0\,.\]