„Deriválás - Szélsőértékek” változatai közötti eltérés

A Fizipedia wikiből
(Feladat)
 
(egy szerkesztő 4 közbeeső változata nincs mutatva)
1. sor: 1. sor:
 +
<noinclude>
 +
[[Kategória:Kísérleti fizika gyakorlat 1.]]
 +
[[Kategória:Szerkesztő: Bácsi Ádám]]
 +
{{Kísérleti fizika gyakorlat
 +
| tárgynév    = Kísérleti fizika gyakorlat 1.
 +
| témakör    = Deriválás
 +
}}
 
== Feladat ==
 
== Feladat ==
 
</noinclude><wlatex># Tekintsük az alábbi, valós számokon értelmezett függvényt:
 
</noinclude><wlatex># Tekintsük az alábbi, valós számokon értelmezett függvényt:
$$ f(x) = 2 x^3 - 3 x^2 - 36 x + 12$$
+
#: $$f(x) = 2 x^3 - 3 x^2 - 36 x + 12$$
Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?
+
#: Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?</wlatex><includeonly></includeonly><noinclude>
</wlatex><includeonly></includeonly><noinclude>
+
== Megoldás ==
 +
<wlatex>#: Határozzuk meg a függvény első deriváltját!
 +
#: $$f'(x) = 6 x^2 - 6 x - 36$$
 +
#: Egy lokális szélsőértéknél ez nulla kell legyen. Megoldva a másodfokú egyenletet:
 +
#: $$ x_{1,2} = \frac{6 \pm \sqrt{36 + 4 \cdot 36 \cdot 6}}{12} = \lbrace-2,\; +3 \rbrace$$
 +
#: Határozzuk meg a második deriváltat!
 +
#: $$f''(x) = 12 x - 6$$
 +
#: Ez az $x = 3$-nál $f''(3) = 30$, pozitív, azaz itt lokális '''minimuma''' van a függvénynek.
 +
#: Az $x = -2$ pontban a második derivált értéke $f''(-2) = -30$, negatív, itt lokális '''maximuma''' van a függvénynek.</wlatex></noinclude>

A lap jelenlegi, 2014. szeptember 9., 12:16-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Deriválás
Feladatok listája:
  1. Alapműveletek vektorokkal
  2. Vektorok felbontása
  3. Egyszerű deriváltak
  4. Inverz függvény deriváltja
  5. Hiperbolikus függvények
  6. Szélsőértékek
  7. Egyvátozós vektorfüggvény
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Tekintsük az alábbi, valós számokon értelmezett függvényt:
    \[f(x) = 2 x^3 - 3 x^2 - 36 x + 12\]
    Hol vannak a függvény lokalás szélsőértékei, és azok milyenek?

Megoldás

  1. Határozzuk meg a függvény első deriváltját!
    \[f'(x) = 6 x^2 - 6 x - 36\]
    Egy lokális szélsőértéknél ez nulla kell legyen. Megoldva a másodfokú egyenletet:
    \[ x_{1,2} = \frac{6 \pm \sqrt{36 + 4 \cdot 36 \cdot 6}}{12} = \lbrace-2,\; +3 \rbrace\]
    Határozzuk meg a második deriváltat!
    \[f''(x) = 12 x - 6\]
    Ez az \setbox0\hbox{$x = 3$}% \message{//depth:\the\dp0//}% \box0%-nál \setbox0\hbox{$f''(3) = 30$}% \message{//depth:\the\dp0//}% \box0%, pozitív, azaz itt lokális minimuma van a függvénynek.
    Az \setbox0\hbox{$x = -2$}% \message{//depth:\the\dp0//}% \box0% pontban a második derivált értéke \setbox0\hbox{$f''(-2) = -30$}% \message{//depth:\the\dp0//}% \box0%, negatív, itt lokális maximuma van a függvénynek.