„Pontrendszerek - 3.1.2” változatai közötti eltérés

A Fizipedia wikiből
 
 
8. sor: 8. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex># Egy súrlódásmentes álló csigán átvetett fonálon egy $m_{1}=90 \,\mathrm{g}$ és egy $m_{2}=110\,\mathrm{g}$ tömegű test függ. A nehezebb test a földfelszín felett $H=2\,\mathrm{m}$-re van. Magára hagyva a rendszert, mennyi idő alatt ér le a nagyobb tömegű test a talajra? Feltesszük, hogy a fonál elegendően hosszú. A csiga és a fonál tömegét elhanyagolhatjuk.
+
</noinclude><wlatex># (3.1.2) Egy súrlódásmentes álló csigán átvetett fonálon egy $m_{1}=90 \,\mathrm{g}$ és egy $m_{2}=110\,\mathrm{g}$ tömegű test függ. A nehezebb test a földfelszín felett $H=2\,\mathrm{m}$-re van. Magára hagyva a rendszert, mennyi idő alatt ér le a nagyobb tömegű test a talajra? Feltesszük, hogy a fonál elegendően hosszú. A csiga és a fonál tömegét elhanyagolhatjuk.
 
</wlatex><includeonly><wlatex>{{Útmutatás|content= Írjuk fel a testekre és a csigára vonatkozó mozgásegyenleteket!}}{{Végeredmény|content= $T=2\,\mathrm{s}$ }}</wlatex></includeonly><noinclude>
 
</wlatex><includeonly><wlatex>{{Útmutatás|content= Írjuk fel a testekre és a csigára vonatkozó mozgásegyenleteket!}}{{Végeredmény|content= $T=2\,\mathrm{s}$ }}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==

A lap jelenlegi, 2013. augusztus 27., 21:35-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Pontrendszerek
Feladatok listája:
  1. Pontrendszerek - 3.1.2
  2. Pontrendszerek - 3.1.3
  3. Pontrendszerek - 3.1.6
  4. Pontrendszerek - 3.1.7
  5. Pontrendszerek - 3.1.9
  6. Pontrendszerek - 3.1.11
  7. Pontrendszerek - 3.1.12
  8. Pontrendszerek - 3.1.13
  9. Pontrendszerek - 3.1.14
  10. Pontrendszerek - 3.1.16
  11. Pontrendszerek - 3.1.18
  12. Pontrendszerek - Rugalmas ütközés térben
  13. Pontrendszerek - 3.1.21
  14. Pontrendszerek - 3.1.23
  15. Pontrendszerek - 3.1.26
  16. Pontrendszerek - 3.3.1
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (3.1.2) Egy súrlódásmentes álló csigán átvetett fonálon egy \setbox0\hbox{$m_{1}=90 \,\mathrm{g}$}% \message{//depth:\the\dp0//}% \box0% és egy \setbox0\hbox{$m_{2}=110\,\mathrm{g}$}% \message{//depth:\the\dp0//}% \box0% tömegű test függ. A nehezebb test a földfelszín felett \setbox0\hbox{$H=2\,\mathrm{m}$}% \message{//depth:\the\dp0//}% \box0%-re van. Magára hagyva a rendszert, mennyi idő alatt ér le a nagyobb tömegű test a talajra? Feltesszük, hogy a fonál elegendően hosszú. A csiga és a fonál tömegét elhanyagolhatjuk.

Megoldás

  1. Mindkét testre hat egy gravitációs erő és egy kötélerő. A két kötélerő megegyezik, mert a kötél nyújthatatlan és tömege elhanyagolható, a csiga tömege szintén elhanyagolható. A két test gyorsulásának nagysága is megegyezik, mert a kötél hossza a mozgás során nem változik. A gyorsulások iránya viszont különböző.
    \[m_{1}a=K-m_{1}g\]
    \[m_{2}a=m_{2}g-K\]
    A két egyenletből
    \[a=\frac{m_{2}-m_{1}}{m_{2}+m_{1}}g\]
    a testek gyorsulása. A \setbox0\hbox{$H$}% \message{//depth:\the\dp0//}% \box0% magasság megtételéhez szükséges idő
    \[T=\sqrt{\frac{2H}{a}}=\sqrt{\frac{2H}{g}\frac{m_{2}+m_{1}}{m_{2}-m_{1}}}=2\,\mathrm{s}\]