„Mechanika - Falhoz támasztott létra” változatai közötti eltérés
A Fizipedia wikiből
(→Feladat) |
|||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># (*3.2.14.) Egy $4\,\rm m$ hosszú létrát függőleges falhoz támasztunk úgy, hogy a vízszintes talajjal $50^{\circ}$-os szöget zár be. A létra és a talaj közötti súrlódási együttható $0,3$. A | + | </noinclude><wlatex># (*3.2.14.) Egy $4\,\rm m$ hosszú létrát függőleges falhoz támasztunk úgy, hogy a vízszintes talajjal $50^{\circ}$-os szöget zár be. A létra és a talaj közötti, valamint a létra és a fal közötti súrlódási együttható egyaránt $0,3$. A létra tömegét hanyagoljuk el! Egy ember mászik felfelé a létrán. Egy olyan helyzetben, ahol a létra még nem csúszik meg, írjuk fel az egyensúly feltételéből származó egyenleteket! Meg tudjuk határozni a nyomó- és tapadási erőket? Milyen magasra mászhat az ember, hogy a létra ne csússzon meg? [[Kép:3.2.14.svg|none|250px]] |
− | [[Kép:3.2.14.svg|none|250px]] | + | |
</wlatex><includeonly><wlatex>{{Útmutatás|content=A nyomatéki egyenletet arra a pontra nézve érdemes felírni, ahol a legtöbb az ismeretlen erő.}}{{Végeredmény|content=$$h=1,095\,\rm m$$}}</wlatex></includeonly><noinclude> | </wlatex><includeonly><wlatex>{{Útmutatás|content=A nyomatéki egyenletet arra a pontra nézve érdemes felírni, ahol a legtöbb az ismeretlen erő.}}{{Végeredmény|content=$$h=1,095\,\rm m$$}}</wlatex></includeonly><noinclude> | ||
A lap 2014. október 28., 12:12-kori változata
Feladat
- (*3.2.14.) Egy hosszú létrát függőleges falhoz támasztunk úgy, hogy a vízszintes talajjal -os szöget zár be. A létra és a talaj közötti, valamint a létra és a fal közötti súrlódási együttható egyaránt . A létra tömegét hanyagoljuk el! Egy ember mászik felfelé a létrán. Egy olyan helyzetben, ahol a létra még nem csúszik meg, írjuk fel az egyensúly feltételéből származó egyenleteket! Meg tudjuk határozni a nyomó- és tapadási erőket? Milyen magasra mászhat az ember, hogy a létra ne csússzon meg?