„Pontrendszerek - 3.1.9” változatai közötti eltérés

A Fizipedia wikiből
(Feladat)
(Feladat)
8. sor: 8. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex>#  Vízszintes talajon $m_{1}=40\,\mathrm{kg}$ tömegű láda fekszik, a súrlódási együttható $\mu=0,2$. Mekkora $m_{2}$ tömegű test képes a ládát megmozdítani az ábrán látható elrendezésben? Mekkora pillanatnyi gyorsulással indulna el ilyen $m_{2}$ tömeg hatására a láda egy súrlódásmentes vízszintes síkon? A csiga tömegét és súrlódását a számításokban elhanyagolhatjuk. ($\alpha=30^\circ$)[[Kép:Kfgy_07_3_1_9.svg|none|250px]]
+
</noinclude><wlatex>#  Vízszintes talajon $m_{1}=40\,\mathrm{kg}$ tömegű láda fekszik, a súrlódási együttható $\mu=0,2$. Mekkora $m_{2}$ tömegű test képes a ládát megmozdítani az ábrán látható elrendezésben? Mekkora pillanatnyi gyorsulással indulna el ilyen $m_{2}$ tömeg hatására a láda egy súrlódásmentes vízszintes síkon? A csiga tömegét és súrlódását a számításokban elhanyagolhatjuk. ($\alpha=30^\circ$)
 
</wlatex><includeonly><wlatex>{{Útmutatás|content=A tapadás feltétele, hogy a tapadási erő felső korlátját $T\leq \mu N$ szerint adhatjuk meg.}}{{Végeredmény|content= $m_{2}> 8,28\,\mathrm{kg}$ <br> $a=1,79\,\mathrm{\frac{m}{s^{2}}}$}}</wlatex></includeonly><noinclude>
 
</wlatex><includeonly><wlatex>{{Útmutatás|content=A tapadás feltétele, hogy a tapadási erő felső korlátját $T\leq \mu N$ szerint adhatjuk meg.}}{{Végeredmény|content= $m_{2}> 8,28\,\mathrm{kg}$ <br> $a=1,79\,\mathrm{\frac{m}{s^{2}}}$}}</wlatex></includeonly><noinclude>
  

A lap 2013. június 20., 12:21-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Pontrendszerek
Feladatok listája:
  1. Pontrendszerek - 3.1.2
  2. Pontrendszerek - 3.1.3
  3. Pontrendszerek - 3.1.6
  4. Pontrendszerek - 3.1.7
  5. Pontrendszerek - 3.1.9
  6. Pontrendszerek - 3.1.11
  7. Pontrendszerek - 3.1.12
  8. Pontrendszerek - 3.1.13
  9. Pontrendszerek - 3.1.14
  10. Pontrendszerek - 3.1.16
  11. Pontrendszerek - 3.1.18
  12. Pontrendszerek - Rugalmas ütközés térben
  13. Pontrendszerek - 3.1.21
  14. Pontrendszerek - 3.1.23
  15. Pontrendszerek - 3.1.26
  16. Pontrendszerek - 3.3.1
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Vízszintes talajon \setbox0\hbox{$m_{1}=40\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0% tömegű láda fekszik, a súrlódási együttható \setbox0\hbox{$\mu=0,2$}% \message{//depth:\the\dp0//}% \box0%. Mekkora \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömegű test képes a ládát megmozdítani az ábrán látható elrendezésben? Mekkora pillanatnyi gyorsulással indulna el ilyen \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömeg hatására a láda egy súrlódásmentes vízszintes síkon? A csiga tömegét és súrlódását a számításokban elhanyagolhatjuk. (\setbox0\hbox{$\alpha=30^\circ$}% \message{//depth:\the\dp0//}% \box0%)

Megoldás

  1. Vizsgáljuk meg, hogy mi a feltétele annak, hogy az \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegűtest ne mozduljon el. A rá ható erők az \setbox0\hbox{$F_{g}$}% \message{//depth:\the\dp0//}% \box0% gravitációs erő, \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% nyomóerő, \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% tapadási erő és a kötél által kifejtett \setbox0\hbox{$K$}% \message{//depth:\the\dp0//}% \box0% kötélerő, melynek iránya a vízszintessel \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% szöget zár be. A kötélerőt felbontjuk vízszintes (\setbox0\hbox{$K\cos\alpha$}% \message{//depth:\the\dp0//}% \box0%) és függőleges (\setbox0\hbox{$K\sin\alpha$}% \message{//depth:\the\dp0//}% \box0%) komponensekre. Az \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegűtestre vonatkozó függőleges és vízszintes irányú mozgásegyenletek
    \[K\sin\alpha+N=m_{1}g\qquad\qquad K\cos\alpha=T\,.\]
    Az \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömegű test sem mozdul ebben az esetben, így \setbox0\hbox{$K=m_{2}g$}% \message{//depth:\the\dp0//}% \box0%. A tapadási erő és a nyomóerő között teljesülnie kell az alábbi összefüggésnek.
    \[T\leq \mu N\]
    \[m_{2}\leq \frac{\mu}{\cos\alpha+\mu\sin\alpha}m_{1}\]
    Ez a feltétel azt adja meg, hogy mekkorának kell lennie az \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömegű testnek ahhoz, hogy az \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegű ne mozduljon el. Ha ennek ellenkezőjére vagynk kíváncsiak, vagyis arra, hogy mekkora \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% ahhoz, hogy \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% elmozduljon, akkor nyilvánvalóan
    \[m_{2}> \frac{\mu}{\cos\alpha+\mu\sin\alpha}m_{1}=8,28\,\mathrm{kg}\]
    kell, hogy teljesüljön.
    Ha nem lenne súrlódás és \setbox0\hbox{$m_{2}=8,28\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0% lenne, akkor az \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegű test
    \[a=\frac{K\cos\alpha}{m_{1}}=\frac{m_{2}\cos\alpha}{m_{1}}g=1,79\,\mathrm{\frac{m}{s^{2}}}\]
    gyorsulással indulna el.