„Pontrendszerek - 3.3.1” változatai közötti eltérés

A Fizipedia wikiből
 
 
8. sor: 8. sor:
 
}}
 
}}
 
== Feladat ==
 
== Feladat ==
</noinclude><wlatex># Lövedékek sebességének mérésére az ún. ballisztikus ingát használják. A homokkal töltött $M=100\,\mathrm{kg}$ tömegű inga $m=0,2\,\mathrm{kg}$-os lövedék becsapódása után $10^\circ$-kal kilendül. Mekkora a lövedék sebessége? Az inga súlypontjának a felfüggesztési ponttól való távolsága $l=2\,\mathrm{m}$.
+
</noinclude><wlatex># (3.3.1) Lövedékek sebességének mérésére az ún. ballisztikus ingát használják. A homokkal töltött $M=100\,\mathrm{kg}$ tömegű inga $m=0,2\,\mathrm{kg}$-os lövedék becsapódása után $10^\circ$-kal kilendül. Mekkora a lövedék sebessége? Az inga súlypontjának a felfüggesztési ponttól való távolsága $l=2\,\mathrm{m}$.
 
</wlatex><includeonly><wlatex>{{Útmutatás|content=Tökéletesen rugalmatlan ütközés.}}{{Végeredmény|content=$v=1560 \,\mathrm{\frac{m}{s}}$}}</wlatex></includeonly><noinclude>
 
</wlatex><includeonly><wlatex>{{Útmutatás|content=Tökéletesen rugalmatlan ütközés.}}{{Végeredmény|content=$v=1560 \,\mathrm{\frac{m}{s}}$}}</wlatex></includeonly><noinclude>
 
== Megoldás ==
 
== Megoldás ==

A lap jelenlegi, 2013. augusztus 27., 21:41-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Pontrendszerek
Feladatok listája:
  1. Pontrendszerek - 3.1.2
  2. Pontrendszerek - 3.1.3
  3. Pontrendszerek - 3.1.6
  4. Pontrendszerek - 3.1.7
  5. Pontrendszerek - 3.1.9
  6. Pontrendszerek - 3.1.11
  7. Pontrendszerek - 3.1.12
  8. Pontrendszerek - 3.1.13
  9. Pontrendszerek - 3.1.14
  10. Pontrendszerek - 3.1.16
  11. Pontrendszerek - 3.1.18
  12. Pontrendszerek - Rugalmas ütközés térben
  13. Pontrendszerek - 3.1.21
  14. Pontrendszerek - 3.1.23
  15. Pontrendszerek - 3.1.26
  16. Pontrendszerek - 3.3.1
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (3.3.1) Lövedékek sebességének mérésére az ún. ballisztikus ingát használják. A homokkal töltött \setbox0\hbox{$M=100\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0% tömegű inga \setbox0\hbox{$m=0,2\,\mathrm{kg}$}% \message{//depth:\the\dp0//}% \box0%-os lövedék becsapódása után \setbox0\hbox{$10^\circ$}% \message{//depth:\the\dp0//}% \box0%-kal kilendül. Mekkora a lövedék sebessége? Az inga súlypontjának a felfüggesztési ponttól való távolsága \setbox0\hbox{$l=2\,\mathrm{m}$}% \message{//depth:\the\dp0//}% \box0%.

Megoldás

  1. A lövedék és a homokzsák tökéletesen rugalmatlan ütközést szenvednek, melynek során a közös végsebesség \setbox0\hbox{$u$}% \message{//depth:\the\dp0//}% \box0% lesz. Az impulzus megmaradás miatt
    \[(M+m)u=mv\,.\]
    Az ütközés után a homokzsák és a lövedék kilendül, melynek során a kezdeti kinetikus energia helyzeti energiává alakul.
    \[\frac{1}{2}(M+m)u^{2}=(M+m)gl(1-\cos\alpha)\qquad\Rightarrow\qquad u=\sqrt{2gl(1-\cos\alpha)}\]
    Ezzel a korábbi egyenletbe helyettesítve
    \[v=\left(1+\frac{M}{m}\right)\sqrt{2gl(1-\cos\alpha)}=1560 \,\mathrm{\frac{m}{s}}\,.\]