„Fizika 2 - Villamosmérnöki alapszak” változatai közötti eltérés
(→Tárgy adatok (2020. tavaszi félév)) |
(→A tantárgy részletes tematikája) |
||
250. sor: | 250. sor: | ||
::Huygens-Fresnel elv. Diffrakció. Elhajlás résen. Elhajlás rácson. Röntgen-diffrakció. | ::Huygens-Fresnel elv. Diffrakció. Elhajlás résen. Elhajlás rácson. Röntgen-diffrakció. | ||
+ | |||
+ | ::Hudson-Nelson: pp. 907-920, 929-948 | ||
*[[Media:Geometriai_es_hullamoptika_20160510x.pdf |Geometriai és hullámoptika]] | *[[Media:Geometriai_es_hullamoptika_20160510x.pdf |Geometriai és hullámoptika]] |
A lap 2020. április 26., 13:12-kori változata
Tárgy adatok (2020. tavaszi félév)
- Előadók: Márkus Ferenc (TTK Fizika Tanszék) és Sarkadi Tamás (TTK Atomfizika Tanszék)
- Tantárgykód: TE11AX22
- Követelmények: 2/1/0/v
- Részletes követelményrendszer
- Kredit: 4
- Nyelv: magyar
- Online digital előadások - letölthető digitális tananyag segítséggel - 2020. március 23-tól!
- Az előadások tematikája a heti beosztást követi.
- Az előadások fejezetei video / segédanyagok formájában a Microsoft Team oldalán eduID belépéssel megteinthetők.
- 6. tanítási hét 2020. március 23 - 27 Hudson-Nelson pp. 705-726 A mágneses térben levő áramvezetőre ható erő. Áramjárta keretre ható erők, a mágneses dipólus fogalma. Hudson-Nelson pp. 733-744 A Biot-Savart törvény. Az Ampere törvény.
Az MS Teams-ből letölthető előadások:
- 1_1_Oersted_Biot.mp4
- 1_2_Egyenes_vez_Biot_Sav.mp4
- 1_3_Ampere_tv.mp4
- 1_4_Szolenoid.mp4
- 1_5_Toroid.mp4
- 1_6_Parhuzamosaramok.mp4
Demonstrációk:
https://fizipedia.bme.hu/index.php/%C3%81ram_m%C3%A1gneses_tere,_Oersted_k%C3%ADs%C3%A9rlet https://fizipedia.bme.hu/index.php/M%C3%A1gneses_t%C3%A9r_er%C5%91hat%C3%A1sa_%C3%A1rammal_%C3%A1tj%C3%A1rt_vezet%C5%91re https://fizipedia.bme.hu/index.php/M%C3%A1gneses_t%C3%A9r_hat%C3%A1sa_vezet%C5%91keretre https://fizipedia.bme.hu/index.php/%C3%81ramvezet%C5%91k_k%C3%B6z%C3%B6tti_er%C5%91hat%C3%A1s_egyen%C3%A1rammal https://fizipedia.bme.hu/index.php/M%C3%A1gneses_er%C5%91vonalak_szeml%C3%A9ltet%C3%A9se_vasporral
- 7. tanítási hét: 2020. március 30 - április 3 Hudson-Nelson pp. 775-784 Az anyagok mágneses tulajdonságai. A mágneses térerősség és a mágneses indukcióvektor. A mágneses hiszterézis.
Az MS Teams-ből letölthető előadások:
- 2_1_Magneses_ter_anyag.mp4
- 2_2_Elektromos_es_magneses_dip.mp4
- 2_3_szuszcept_permeab.mp4
- 2_4_ferromagnes.mp4
- 2_5_diamagnes.mp4
- 2_Magnesesseg_anyag_jegyzet.jpg
Demonstrációk:
https://fizipedia.bme.hu/index.php/Diam%C3%A1gness%C3%A9g,_param%C3%A1gness%C3%A9g_-_szil%C3%A1rd_anyagok https://fizipedia.bme.hu/index.php/Diam%C3%A1gness%C3%A9g,_param%C3%A1gness%C3%A9g_-_folyad%C3%A9kok https://fizipedia.bme.hu/index.php/M%C3%A1gneses_dom%C3%A9nek https://fizipedia.bme.hu/index.php/M%C3%A1gneses_Curie_pont
- 8. tanítási hét: 2020. április 6 - 10 Hudson-Nelson: pp. 749-769 A Faraday törvény. A mágneses fluxus. A Lenz törvény. Az örvényáramok. Az önindukció. A kölcsönös indukció. Transzformátorok. Az önindukciós tekercs energiája. RL áramkörök (tekercs bekapcsolása és kikapcsolása).
Az MS Teams-ből letölthető előadások:
- 3_1_mozgasi_indukcio.mp4
- 3_2_Lenz_torveny.mp4
- 3_3_Faraday_torveny.mp4
- 3_4_hurokban_indukált_fesz.mp4
- 3_5_kolcsonos_es_onindukcio.mp4
- 3_6_transzf_tekercs_ki_be.mp4
- 3_7_magneses_ter_energiaja.mp4
- 3_indukcio_jegyzet.jpg
Demonstrációk:
https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_I. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_II. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_III. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_IV. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_V. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_VI. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_VII. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_VIII. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_IX. https://fizipedia.bme.hu/index.php/M%C3%A1gneses_indukci%C3%B3_X. https://fizipedia.bme.hu/index.php/%C3%96nindukci%C3%B3_I. https://fizipedia.bme.hu/index.php/%C3%96nindukci%C3%B3_II.
- 9. tanítási hét: 2020. április 13 - április 7 Hudson-Nelson: pp. 819-831 Elektromágneses hullámok: Az eltolási áram. A Maxwell-egyenletek rendszere. Az elektromágneses hullámok, hullámegyenlet, polarizáció.
Az MS Teams-ből letölthető előadások:
- 4_1_Poynting_vektor.mp4
- 4_2_Eltolasi_aram.mp4
- 4_3_Toltodo_kondenzator.mp4
- 4_4_Maxwell_1.mp4
- 4_5_Maxwell_hullamegyenlet.mp4
- 4_6_EM_hullam_1.mp4
- 4_7_EM_hullam_2.mp4
- 4_8_EM_energiaja.mp4
- 4_9_EM_impulzusa.mp4
- 4_EM_hullamok.jpg
- Gyakorlatok
A gyakorlatok az órarendi időpontokban online digitális formában megtartásra kerülnek az MS Teams alkalmazásával. A párhuzamos gyakorlatok kurzusait a gyakorlat idejére összevonjuk. A gyakorlatok a félévi beosztást követik. A kiszh követelményeket a következőképpen lehet teljesíteni: A kurzust vezető oktató a gyakorlat témájához kapcsolódó személyre szóló feladatot küld ki a hallgatónak, amelynek megoldását kézzel írva, pdf formátumban a gyakorlatvezetőnek adott határidőre el kell küldenie. A kidolgozandó feladat az órán megoldott vagy példatári feladat módosításából, pl. egy feladatrész továbbszámolásából, származik. A feladat értékelése: elfogadható / nem fogadható el.
Összesen 4 ilyen kiküldött feladat lesz, amelyből legalább 3 elfogadható értékelésű kell legyen. Ez az aláírás feltétele. Azokon kurzusokon, ahol már volt kiszh, ott a megírt kiszh-kat a 4 feladatba bele kell számolni.
Gyakorlatok
- 3. gyakorlat 2020. március 9 - 27 (A március 12-én, csütörtökön elmaradt gyakorlatok külön alkalommal kerülnek pótlásra.)
- 4. gyakorlat 2020. március 30 - április 10
- Félévközi számonkérések: 4 kiszh a gyakorlatokon (lásd. fent) +
- Nagy zh: 2020-04-09, Cs 8-10 - elmarad
- PótNagy zh: 2020-04-27, H 18-20 - elmarad
- PótKis zh:
- PótpótNagy vagy PótPótKis zh: 2020-05-26, K pótlási héten
- Félév végi jegy: írásbeli vizsga
- A vizsga menete:
A 8.00 órai kezdés azt jelenti, hogy a vizsgalap a padon van és hozzá lehet kezdeni a kidolgozáshoz.
A vizsgaterembe legkésőbb 7.55-kor lehet belépni. Belépéskor a mobiltelefonokat és egyéb kommunikáló eszközöket a táskába, kabátba kell betenni. A táskát, kabátot a fogasokra, illetve a padsorok végében a falhoz kell elhelyezni. Ezt követően az ülésrendnek megfelelően mielőbb le kell ülni. A belépéssel egyidőben megkezdődik a vizsga, tehát nem lehet írott dolgokat lapozgatni, egymással beszélgetni, és egyáltalán bármivel a vizsgakezdést akadályozni. A dolgozatokat 8 óra előtt egy-két perccel elkezdjük kiosztani, azért, hogy a dolgozatírás 8 órakor megkezdődhessen és 10 órakor befejeződhessen.
A vizsga során íróeszközöket használhatnak, és személyi azonosítóval igazolják magukat.
A tantárgy célkitűzése
A Fizika tantárgy célja a mérnökképzésben kettős. Egyrészt meg kell ismertetni a hallgatóságot azokkal a fizikai törvényekkel és összefüggésekkel, amelyek a konkrét műszaki problémák megoldásának az elvi hátterét adják. Másrészt ezek a törvények (és elvek) általánosságuknál fogva maghatározzák az adott kor modern természettudományos világképét is, így ennek kialakítása ugyancsak fontos feladat a mérnökképzés folyamatában. Mindez alapvetően hozzájárul a műszaki értelmiség társadalmi hitelének és tudományos presztízsének megalapozásához.
A Fizika 2 a "Hudson-Nelson: Útban a modern fizikához" tankönyv fejezeteit követi.
A tantárgy keretében tárgyalt elektrodinamika, speciális relativitás és kvantummechanika csak az általános ismeretek közlésére szorítkozik. Itt elsősorban az axiomatikus felépítést és annak tapasztalati megalapozását kell megtanítani. A jelenségcentrikus képzést valamennyi előadásnál 10-15 perc tárgyhoz tartozó példafeladat bemutatása, video vagy demonstráció segíti.
A tantárgy részletes tematikája
- 1. előadás
- KÍSÉRLETEK: Kísérletek elektroszkóppal. Dörzsöléses elektromosság. Elektromos megosztás. Töltések elhelyezkedése szigetelőkön és vezetőkön. Csúcshatás. Van de Graaff generátor. Elektromos mező kimutatása ricinusolajban lévő grízszemekkel. Coulomb mérleg.
- AZ ELŐADÁS ANYAGA
- A COULOMB TÖRVÉNY ÉS AZ ELEKTROMOS ERŐTÉR: Elektrosztatikus erők. Vezetők és szigetelők. A Coulomb törvény. Az elektromos erőtér. Az elektromos dipólus. Folytonos töltéseloszlások által létrehozott elektromos erőterek.
- Hudson-Nelson: pp. 567-589
- 2. előadás
- AZ ELŐADÁS ANYAGA
- GAUSS TÖRVÉNYE: Az elektromos fluxus. A Gauss törvény. A Gauss törvény és az elektromos vezetők.
- AZ ELEKTROMOS POTENCIÁL: Az elektromos potenciál. A potenciál gradiense. Ekvipotenciális felületek.
- Hudson-Nelson: pp. 595-609; 613-631
- 3. előadás
- KÍSÉRLETEK: Töltött kondenzátor energiája. Erőhatások dielektrikumokban. Leideni palack.
- AZ ELŐADÁS ANYAGA
- KONDENZÁTOR ÉS AZ ELEKTROMOS ERŐTÉR ENERGIÁJA: A kapacitás fogalma. Kondenzátorok kapcsolása. Dielektrikumok. A kondenzátor energiája. Az elektromos erőtér energiája.
- Hudson-Nelson: pp. 635-650
- 4. előadás
- KÍSÉRLETEK: Kondenzátor feltöltése és kisütése.
- AZ ELŐADÁS ANYAGA
- AZ ELEKTROMOS ÁRAM ÉS AZ ELLENÁLLÁS: Az elektromotoros erő. Az elektromos áramsűrűség és az elektromos áram. Az elektromos vezetőképesség és ellenállás. Az Ohm törvény differenciális alakban. A Joule törvény. Az RC-körök (kondenzátor feltöltése és kisütése).
- Hudson-Nelson: pp. 655-669
- 5. előadás
- KÍSÉRLETEK: Mágneses erővonalak kimutatása vasreszelékkel. Oersted kísérlet. Mágneses térben lévő áramjárta keretre ható erők. Párhuzamos vezetők mágneses kölcsönhatása. Faraday motor.
- AZ ELŐADÁS ANYAGA
- A MÁGNESES ERŐTÉR: A mágneses erőtér. Töltött részecskék mozgása mágneses erőtérben. A Lorentz-erő. A mágneses térben levő áramvezetőre ható erő. Áramjárta keretre ható erők, a mágneses dipólus fogalma.
- Hudson-Nelson: pp. 705-726
- 6. előadás
- AZ ELŐADÁS ANYAGA
- A MÁGNESES ERŐTÉR FORRÁSA: A Biot-Savart törvény. Az Ampere törvény.
- Hudson-Nelson: pp. 733-744
- 7. előadás
- KÍSÉRLETEK: Cseppfolyós nitrogén diamágnessége, cseppfolyós oxigén paramágnessége. Mágneses hiszterézis. Ferromágneses domének bemutatása.
- AZ ELŐADÁS ANYAGA
- AZ ANYAG MÁGNESES TULAJDONSÁGAI: Az anyagok mágneses tulajdonságai. A mágneses térerősség és a mágneses indukcióvektor. A mágneses hiszterézis.:
- Hudson-Nelson: pp. 775-784
- 8. előadás
- KÍSÉRLETEK: Faraday-féle törvény bemutatása, nyugalmi és mozgási indukció. Lenz törvény szemléltetése lengő gyűrűvel, fémcsőben mozgó mágnessel- Transzformátorok. Zenélő teáskanna. Elektromos jelek átvitele indukciós csatolással.
- AZ ELŐADÁS ANYAGA
- A FARADAY TÖRVÉNY ÉS AZ INDUKTIVITÁS: A Faraday törvény. A mágneses fluxus. A Lenz törvény. Az örvényáramok. Az önindukció. A kölcsönös indukció. Transzformátorok. Az önindukciós tekercs energiája. RL áramkörök (tekercs bekapcsolása és kikapcsolása).
- Hudson-Nelson: pp. 749-769
- 9. előadás
- KÍSÉRLETEK:Állóhullámok Lecher drótpáron. Dipólus antenna sugárzása. Mikrohullámú optika. Kísérletek mikrohullámú sütővel.
- AZ ELŐADÁS ANYAGA
- ELEKTROMÁGNESES HULLÁMOK: Az eltolási áram. A Maxwell-egyenletek rendszere. Az elektromágneses hullámok, hullámegyenlet, polarizáció.
- Hudson-Nelson: pp. 819-831
- 10. előadás
- AZ ELŐADÁS ANYAGA
- ELEKTROMÁGNESES HULLÁMOK: Elektromágneses hullámok keltése. Elektromágneses hullámok energiája és impulzusa.
- Hudson-Nelson: pp. 832-842
- 11. előadás
- KÍSÉRLETEK: Interferencia laser fénnyel. Michelson interferométer bemutatása. Newton gyűrűk. Diffrakció bemutatása optikai padon.
- AZ ELŐADÁS ANYAGA
- Huygens-Fresnel elv. Diffrakció. Elhajlás résen. Elhajlás rácson. Röntgen-diffrakció.
- Hudson-Nelson: pp. 907-920, 929-948
- 12. előadás
- KÍSÉRLETEK: Franck-Hertz kísérlet (az atomi energiaszintek kimutatása). Fényelektromos jelenség. Fényspektrum analizálás különböző fényforrások esetén. Interferencia létrehozása elektronokkal.
- AZ ELŐADÁS ANYAGA
- Bevezetés a modern fizikába – a kvantumos jelenségek kísérleti előzményei. Hőmérsékleti sugárzás. A feketetest-sugárzás spektruma. A feketetest sugárzás különböző értelmezései. Planck elmélet. Fényelektromos hatás. Compton-effektus. Az elektromágneses sugárzás „kettős természete”. Részecskék hullámtermészete. Atommodellek. Korrespondencia-elv. A de Broglie-hullámok. A Davisson-Germer-kísérlet.
- 13. előadás
- AZ ELŐADÁS ANYAGA
- Schrödinger-féle hullámegyenlet. A hullámfüggvény fizikai jelentése. Alagúteffektus. Határozatlansági elv. Komplementaritási elv. A hidrogénatom kvantumállapotai. A Pauli-féle kizárási elv és az elemek periódusos rendszere. Az elektron spin.
- 14. előadás
- AZ ELŐADÁS ANYAGA
- Alkalmazott kvantummechanika a pásztázó alagútmikroszkóptól a kvantuminformatikáig.
Számolási gyakorlatok
- Gyakorlatok beosztasa
VA01 +SZE:12:15-14:00 (E404) Szegleti András
VA02 +SZE:12:15-14:00 (E405) Dr. Varga Gábor
VA03 ++SZE:12:15-14:00 (E404) Szegleti András
VA04 ++SZE:12:15-14:00 (E405) Dr. Varga Gábor
VB01 ++CS:15:15-17:00 (E405) Dr. Sarkadi Tamás
VB02 ++CS:15:15-17:00 (E407) Dr. Márkus Ferenc
VB03 ++CS:15:15-17:00 (E406) Mihajlik Gábor
VB04 +CS:15:15-17:00 (E407) Dr. Márkus Ferenc
VB05 +CS:15:15-17:00 (E406) Dr. Barócsi Attila
- 1. Gyakorlat
- 2. Gyakorlat
- 3. Gyakorlat
- 4. Gyakorlat
- 5. Gyakorlat
- 6. Gyakorlat
- 7. Gyakorlat