Mechanika - Merev testek I.

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2012. november 8., 14:56-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Merev testek I.
Feladatok listája:
  1. Egyenletesen gyorsuló forgás
  2. Forgatónyomaték gyorsuló forgásnál
  3. Lendkerék fékezése
  4. Gömb felületén lévő tengellyel
  5. Korong fonállal gyorsítva
  6. Pálca mint inga
  7. Korong mint inga
  8. Forgó lemez közegellenállással
  9. Oldalra húzott rúd egyensúlya
  10. Falhoz támasztott létra
  11. Korongba lőtt golyó
  12. Összekapcsolódó lendkerekek
  13. Súrlódó tárcsák
  14. Szíjhajtás
  15. Tehetetlenségi nyomaték számítás
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladatok

  1. (3.2.1.) Merev test egyenletesen gyorsuló forgó mozgást végez. Szögsebessége \setbox0\hbox{$2\,\mathrm{s}$}% \message{//depth:\the\dp0//}% \box0% alatt \setbox0\hbox{$\omega_0=0$}% \message{//depth:\the\dp0//}% \box0%-ról \setbox0\hbox{$\omega=10\,\rm s^{-1}$}% \message{//depth:\the\dp0//}% \box0%-ra változik. Mekkora a szöggyorsulása? Mekkora a szögelfordulása \setbox0\hbox{$2\,\rm s$}% \message{//depth:\the\dp0//}% \box0% alatt? Mekkora a kerületi gyorsulása a tengelytől \setbox0\hbox{$0,2\,\rm m$}% \message{//depth:\the\dp0//}% \box0% távolságra levő tömegpontnak?
  2. (3.2.2.) Mekkora forgatónyomaték hat arra a \setbox0\hbox{$100\,\rm{kg\cdot m^2}$}% \message{//depth:\the\dp0//}% \box0% tehetetlenségi nyomatékú testre, amely nyugalomból indulva a forgatónyomaték hatására egyenletesen gyorsulva \setbox0\hbox{$10\,\rm s$}% \message{//depth:\the\dp0//}% \box0% alatt 50 fordulatot tesz meg?
  3. (3.2.3.) Egy \setbox0\hbox{$m=50\,\rm{kg}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$R=0,5\,\rm m$}% \message{//depth:\the\dp0//}% \box0% sugarú homogén lendítőkerék \setbox0\hbox{$600/\rm{perc}$}% \message{//depth:\the\dp0//}% \box0% fordulatszámmal forog. A korong pereme és a féktuskó között a súrlódási együttható 0,5.
    a) Mekkora erővel kell a féktuskót a koronghoz szorítani, hogy az \setbox0\hbox{$10\, \rm s$}% \message{//depth:\the\dp0//}% \box0% alatt megálljon?
    b) Mekkora a megállítás ideje alatt a súrlódó erő munkája?
  4. (*3.2.4.) \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű gömböt egy, sugarának gömbfelület menti végpontján átmenő tengely körül megforgatunk.
    a) Mekkora a gömb adott tengelyre vonatkozó tehetetlenségi nyomatéka, ha súlyponti tengelyére vonatkozóan \setbox0\hbox{$\theta_{\text{TKP}}=\frac25mR^2$}% \message{//depth:\the\dp0//}% \box0%?
    b) Mekkora nyomatékra van szükség ahhoz, hogy \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0% nagyságú szöggyorsulással tudjuk forgásba hozni?
    c) Hogyan kell változni az idő függvényében azon energiaforrás teljesítményének, amely az állandó \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0% szöggyorsulást biztosítani képes, ha a gömb a \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0% időpontban nyugalomból indult?
  5. (*3.2.5.) Rögzített tengely körül forgó \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% tömegű és \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú korong kerületére fonalat csavarunk. A fonalat állandó \setbox0\hbox{$P$}% \message{//depth:\the\dp0//}% \box0% teljesítményű energiaforrással kapcsolatban álló szerkezet feszíti.
    a) Hogyan változik a korong szöggyorsulása az idő függvényében, ha a korong a \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0% időpontban nyugalomban volt?
    b) Mennyi ideig kell a fonalat húzni, ha a korong forgási energiáját \setbox0\hbox{$E_{\rm{forg}}$}% \message{//depth:\the\dp0//}% \box0% értékre akarjuk növelni?