Mechanika - Korong fonállal gyorsítva

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2012. november 8., 15:15-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Merev testek I.
Feladatok listája:
  1. Egyenletesen gyorsuló forgás
  2. Forgatónyomaték gyorsuló forgásnál
  3. Lendkerék fékezése
  4. Gömb felületén lévő tengellyel
  5. Korong fonállal gyorsítva
  6. Pálca mint inga
  7. Korong mint inga
  8. Forgó lemez közegellenállással
  9. Oldalra húzott rúd egyensúlya
  10. Falhoz támasztott létra
  11. Korongba lőtt golyó
  12. Összekapcsolódó lendkerekek
  13. Súrlódó tárcsák
  14. Szíjhajtás
  15. Tehetetlenségi nyomaték számítás
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (*3.2.5.) Rögzített tengely körül forgó \setbox0\hbox{$M$}% \message{//depth:\the\dp0//}% \box0% tömegű és \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú korong kerületére fonalat csavarunk. A fonalat állandó \setbox0\hbox{$P$}% \message{//depth:\the\dp0//}% \box0% teljesítményű energiaforrással kapcsolatban álló szerkezet feszíti.
    a) Hogyan változik a korong szöggyorsulása az idő függvényében, ha a korong a \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0% időpontban nyugalomban volt?
    b) Mennyi ideig kell a fonalat húzni, ha a korong forgási energiáját \setbox0\hbox{$E_{\rm{forg}}$}% \message{//depth:\the\dp0//}% \box0% értékre akarjuk növelni?

Megoldás

Mivel \setbox0\hbox{$P=\text{áll.}$}% \message{//depth:\the\dp0//}% \box0% és a test nyugalomból indul,
\[E_{\text{forg}}=\frac12\theta\omega^2(t)=Pt\]
Ebből
\[\omega(t)=\sqrt{\frac{2P}{\theta}}\sqrt{t},\]
majd ezt idő szerint deriválva
\[\beta=\dot\omega=\sqrt{\frac{P}{2\theta}} \frac1{\sqrt t}\]
A megadott mozgási energia eléréséhez szükséges idő a teljesítmény állandósága miatt egyszerűen \setbox0\hbox{$t=\frac{E_{\text{forg}}}P$}% \message{//depth:\the\dp0//}% \box0%