Pontrendszerek - 3.1.18

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Bacsi (vitalap | szerkesztései) 2013. augusztus 27., 21:40-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Pontrendszerek
Feladatok listája:
  1. Pontrendszerek - 3.1.2
  2. Pontrendszerek - 3.1.3
  3. Pontrendszerek - 3.1.6
  4. Pontrendszerek - 3.1.7
  5. Pontrendszerek - 3.1.9
  6. Pontrendszerek - 3.1.11
  7. Pontrendszerek - 3.1.12
  8. Pontrendszerek - 3.1.13
  9. Pontrendszerek - 3.1.14
  10. Pontrendszerek - 3.1.16
  11. Pontrendszerek - 3.1.18
  12. Pontrendszerek - Rugalmas ütközés térben
  13. Pontrendszerek - 3.1.21
  14. Pontrendszerek - 3.1.23
  15. Pontrendszerek - 3.1.26
  16. Pontrendszerek - 3.3.1
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (3.1.18) Két rugalmas golyó ugyanakkora \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% nagyságú sebességgel halad egymás felé vízszintes egyenesen. Tökéletesen rugalmas ütközés után az egyik golyó nyugalomban marad. Mekkora lesz a másik golyó ütközés előtti és utáni \setbox0\hbox{$v'$}% \message{//depth:\the\dp0//}% \box0% sebességeinek aránya? Mekkora a golyók tömegeinek aránya?

Megoldás

  1. Tökéletesen rugalmas ütközés során a két golyó teljes impulzusa és teljes kinetikus energiája is megmarad.
    \[m_{1}v-m_{2}v=m_{2}v'\qquad\qquad \frac{1}{2}m_{1}v^{2}+\frac{1}{2}m_{2}v^{2}=\frac{1}{2}m_{2}v'^{2}\]
    Az egyenletrendszert megoldva
    \[m_{1}=3m_{2}\qquad\qquad \frac{v'}{v}=2\,.\]