Elektrosztatika példák - Áramvonalak törési törvénye

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Beleznai (vitalap | szerkesztései) 2013. szeptember 14., 20:17-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 2.
Gyakorlatok listája:
  1. Erőhatások elektromos erőtérben, elektromos térerősség
  2. Elektromos potenciál
  3. Dielektrikumok, Gauss-tétel. Kapacitás, kondenzátorok
  4. Kapacitás, kondenzátorok. Elrendezések energiája
  5. Vezetőképesség, áramsűrűség
  6. Biot-Savart törvény, gerjesztési törvény
  7. Erőhatások mágneses térben
  8. Mágneses térerősség. Kölcsönös és öninduktivitás
  9. Az indukció törvénye, mozgási indukció
  10. Mágneses tér energiája. Váltakozó áram, eltolási áram
Elektrosztatika - Vezetőképesség, áramsűrűség
Feladatok listája:
  1. Vezető anyaggal töltött kondenzátor ellenállása
  2. Változó vezetőképességű anyaggal töltött kocka ellenállása
  3. Határfelületen kialakult töltéssűrűség
  4. Különböző vezetőképességű anyagok határfelületén az átfolyó áram hatására kialakuló felületi töltéssűrűség
  5. Áramvonalak törési törvénye
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Határozzuk meg az áramvonalak törési törvényét a \setbox0\hbox{$\sigma_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\sigma_2$}% \message{//depth:\the\dp0//}% \box0% vezetőképességű közegek határán.

Megoldás


Legyen \setbox0\hbox{$\alpha_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$\alpha_2$}% \message{//depth:\the\dp0//}% \box0% az áramvonalaknak a közeghatár normálisával bezárt szöge a két közegben. A kontinuitási törvény értelmében az áramvonalak határfelületre merőleges komponense állandó.

\[\vec{j_1}\cdot\vec{A} =\vec{j_2}\cdot\vec{A} \rightarrow j_1\cos\left(\alpha_1\right) = j_2\cos\left(\alpha_2\right) \]

Az örvénymentességből pedig következik, hogy az elektromos tér felülettel párhuzamos komponense folytonosan megy át:

\[E_{1t} = E_{2t} \]

Ezen összefüggésbe behelyettesítve a differenciális Ohm-törvényt:

\[\frac{j_1 \sin\left(\alpha_1\right)}{\sigma_1} = \frac{j_2 \sin\left(\alpha_2\right)}{\sigma_2}\]

A határfelületre merőleges és párhuzamos áramsűrűség-komponensekre felírt egyenletek hányadosát véve megkapjuk a törési törvényt:

\[\sigma_1\cdot\cot\left(\alpha_1\right) = \sigma_2\cdot\cot\left(\alpha_2\right)\]