Mechanika - Csillapodó rezgés paraméterei

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2013. december 3., 13:35-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Rezgések II.
Feladatok listája:
  1. Túlcsillapított rezgés
  2. Kritikus csillapítás
  3. Csillapodó rezgés periódusa
  4. Csillapodó rezgés paraméterei
  5. Rángatott rugó
  6. Rezonanciák
  7. Jósági tényező
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. (6.33.) Egy csillapított rezgésnél az amlitúdó hat teljes rezgés után tizedére csökken. A rezgésidő \setbox0\hbox{$T=0,8\,\rm s$}% \message{//depth:\the\dp0//}% \box0%. Határozzuk meg a rezgési folyamatra jellemző D/m állandót és \setbox0\hbox{$\beta$}% \message{//depth:\the\dp0//}% \box0% csillapítási tényezőt!

Megoldás

A csillapodásból \setbox0\hbox{$e^{-6\beta T}=\frac 1{10}$}% \message{//depth:\the\dp0//}% \box0%, azaz
\[\beta T=\frac{\ln(10)}6\]
\[\beta=\frac{\ln(10)}{6T}=0,48\,\rm{\frac1s}\]
A periódusidőből ismert a tényleges körfrekvencia, így
\[\frac Dm=\omega_0^2=\omega^2+\beta^2=(\frac{2\pi}T)^2+\beta^2=62\,\rm{\frac1{s^2}}\]