Pontrendszerek - 3.1.16

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Bacsi (vitalap | szerkesztései) 2013. április 13., 13:40-kor történt szerkesztése után volt.

(eltér) ←Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)
Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Pontrendszerek
Feladatok listája:
  1. Pontrendszerek - 3.1.2
  2. Pontrendszerek - 3.1.3
  3. Pontrendszerek - 3.1.6
  4. Pontrendszerek - 3.1.7
  5. Pontrendszerek - 3.1.9
  6. Pontrendszerek - 3.1.11
  7. Pontrendszerek - 3.1.12
  8. Pontrendszerek - 3.1.13
  9. Pontrendszerek - 3.1.14
  10. Pontrendszerek - 3.1.16
  11. Pontrendszerek - 3.1.18
  12. Pontrendszerek - Rugalmas ütközés térben
  13. Pontrendszerek - 3.1.21
  14. Pontrendszerek - 3.1.23
  15. Pontrendszerek - 3.1.26
  16. Pontrendszerek - 3.3.1
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Valamely \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegű test rugalmatlanul ütközik egy \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömegű testtel. Határozzuk meg hányadrésze vész el a kinetikus energiának, ha az \setbox0\hbox{$m_{2}$}% \message{//depth:\the\dp0//}% \box0% tömegű test az ütközés előtt nyugalomban volt!

Megoldás

  1. Az ütközés során megmarad az impulzus és a tökéletes rugalmatlanság miatt az ütközés utáni sebességek megegyeznek. Ha az \setbox0\hbox{$m_{1}$}% \message{//depth:\the\dp0//}% \box0% tömegű test ütközés előtti sebességét \setbox0\hbox{$v_{1}$}% \message{//depth:\the\dp0//}% \box0%-gyel, az ütközés utáni sebességet pedig \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0%-vel jelöljük, akkor az impulzus megmaradást az alábbiak szerint írhatjuk fel.
    \[m_{1}v_{1}=(m_{1}+m_{2})v\qquad\Rightarrow\qquad v=\frac{m_{1}}{m_{1}+m_{2}}v_{1}\]
    A kinetikus energia veszteség aránya
    \[\frac{E_{kin,0}-E_{kin}}{E_{kin,0}}=\frac{\frac{1}{2}m_{1}v_{1}^{2}-\frac{1}{2}(m_{1}+m_{2})v^{2}}{\frac{1}{2}m_{1}v_{1}^{2}}=\frac{m_{2}}{m_{1}+m_{2}}\,.\]