Mechanika - Lelógatott korong
A Fizipedia wikiből
[rejt] Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Merev testek II. |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- (3.3.6.)
sugarú
tömegű korong kerületére csavart fonál végét rögzítjük, és a korongot elengedjük.
- a) Írjuk le a korong mozgását!
- b) Mekkora a korong
szögsebessége és középpontjának
sebessége, ha a korong kezdősebesség nélkül indult és mozgása során a korongról
hosszúságú fonaldarab csavarodott le?
Megoldás
A mozgásegyenletek![\[ma=mg-K\]](/images/math/e/2/2/e22302ddebe0869cc2c18e478e070415.png)
![\[\theta_{\rm{TKP}}\beta=KR,\]](/images/math/3/f/1/3f193bdce74088c14c795bf11a902979.png)






![\[\beta=\frac{2g}{3R}\]](/images/math/c/6/a/c6af796891b7a163698d29903524966c.png)
![\[K=\frac{mg}3\]](/images/math/5/2/7/52725fae775e2fae11b0ff221c1c53ea.png)


![\[mgl=\frac12 \theta \omega^2\]](/images/math/0/a/c/0ac4e93f5b9010e74bbdcbf2d1a22990.png)

![\[\omega=\sqrt{\frac{4gl}{3R^2}}\]](/images/math/5/9/d/59d2cc5504905104ac1e8e187ab1e258.png)
![\[v=\sqrt{\frac43 gl}\]](/images/math/5/7/a/57a92411e8d0a4b01ec5b3e9920a3958.png)