„Elektrosztatika példák - Hengerfelületre feltekert síkkondenzátor” változatai közötti eltérés
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex>#Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, $r$ sugarú hengerre úgy, hogy annak palástján a fegyverzetek $N$ réteget alkotnak az 1. ábra szerint. Mennyivel változik az így kapott kondenzátor kapacitása az eredeti állapotához képest? Tételezzük fel, hogy a feltekert fegyverzetek sok réteget alkotnak ($N\gg 1$), és a rétegrendszer teljes vastagsága lényegesen kisebb, mint a henger sugara ($r\gg 2Nd$). [[Kép:KFGY2-3-9_1.png|none| | + | </noinclude><wlatex>#Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, $r$ sugarú hengerre úgy, hogy annak palástján a fegyverzetek $N$ réteget alkotnak az 1. ábra szerint. Mennyivel változik az így kapott kondenzátor kapacitása az eredeti állapotához képest? Tételezzük fel, hogy a feltekert fegyverzetek sok réteget alkotnak ($N\gg 1$), és a rétegrendszer teljes vastagsága lényegesen kisebb, mint a henger sugara ($r\gg 2Nd$). [[Kép:KFGY2-3-9_1.png|none|350px]] </wlatex><includeonly><wlatex>{{Útmutatás|content=A Gauss tétel segítségével állapítsuk meg az egyes fóliarétegeken lévő töltésmennyiséget és adjuk össze!}}{{Végeredmény|content=$$C=\dfrac{Q}{U}=\dfrac{\dfrac{2N-1}{N}A\varepsilon_{0}E}{Ed}=\dfrac{2N-1}{N}\varepsilon_{0}\dfrac{A}{d} $$}} |
</wlatex></includeonly><noinclude> | </wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == | ||
14. sor: | 14. sor: | ||
Ha $r\gg d$, akkor a fóliák közti térerősség rendre {$+E$, $-E$, $+E$, $-E$...} (2. ábra) ahol $U=Ed$ a fóliák között mérhető potenciálkülönbség. | Ha $r\gg d$, akkor a fóliák közti térerősség rendre {$+E$, $-E$, $+E$, $-E$...} (2. ábra) ahol $U=Ed$ a fóliák között mérhető potenciálkülönbség. | ||
− | [[Kép:KFGY2-3-9_2.png|none| | + | [[Kép:KFGY2-3-9_2.png|none|350px]] |
Hogy megállapítsuk a legbelső, pozitív töltésű fóliarétegen található $Q_{1}$ töltés mennyiségét, felvesszük a 3. ábra szerinti felületet, és alkalmazzuk rá a Gauss törvényt. | Hogy megállapítsuk a legbelső, pozitív töltésű fóliarétegen található $Q_{1}$ töltés mennyiségét, felvesszük a 3. ábra szerinti felületet, és alkalmazzuk rá a Gauss törvényt. | ||
− | [[Kép:KFGY2-3-9_3.png|none| | + | [[Kép:KFGY2-3-9_3.png|none|350px]] |
Belátható, hogy: | Belátható, hogy: | ||
39. sor: | 39. sor: | ||
A második, negatív töltésű fóliarétegen található {$Q_{2}$} töltést az 4. ábra szerinti Gauss-felület felvételével határozzuk meg. | A második, negatív töltésű fóliarétegen található {$Q_{2}$} töltést az 4. ábra szerinti Gauss-felület felvételével határozzuk meg. | ||
− | [[Kép:KFGY2-3-9_4.png|none| | + | [[Kép:KFGY2-3-9_4.png|none|350px]] |
Megállapítható, hogy: | Megállapítható, hogy: | ||
68. sor: | 68. sor: | ||
Ha a Gauss tételt sorban alkalmazzuk olyan zárt felületekre, amelyek rendre egyel több fóliaréteget zárnak magukba az előzőleg felvett felülethez képest, beláthatjuk, hogy a töltés az egyes fóliarétegeken az 5. ábra szerint alakul. | Ha a Gauss tételt sorban alkalmazzuk olyan zárt felületekre, amelyek rendre egyel több fóliaréteget zárnak magukba az előzőleg felvett felülethez képest, beláthatjuk, hogy a töltés az egyes fóliarétegeken az 5. ábra szerint alakul. | ||
− | [[Kép:KFGY2-3-9_5.png|none| | + | [[Kép:KFGY2-3-9_5.png|none|350px]] |
A legkülső felületen szükségszerűen $-Q_{1}$ töltésnek kell lenni, hogy a rendszer kifelé semlegesnek mutatkozzék. | A legkülső felületen szükségszerűen $-Q_{1}$ töltésnek kell lenni, hogy a rendszer kifelé semlegesnek mutatkozzék. |
A lap 2013. július 28., 12:04-kori változata
Feladat
- Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, sugarú hengerre úgy, hogy annak palástján a fegyverzetek réteget alkotnak az 1. ábra szerint. Mennyivel változik az így kapott kondenzátor kapacitása az eredeti állapotához képest? Tételezzük fel, hogy a feltekert fegyverzetek sok réteget alkotnak (), és a rétegrendszer teljes vastagsága lényegesen kisebb, mint a henger sugara ().
Megoldás
Ha , akkor a fóliák közti térerősség rendre {, , , ...} (2. ábra) ahol a fóliák között mérhető potenciálkülönbség.
Hogy megállapítsuk a legbelső, pozitív töltésű fóliarétegen található töltés mennyiségét, felvesszük a 3. ábra szerinti felületet, és alkalmazzuk rá a Gauss törvényt.
Belátható, hogy:
-A felvett felület csak a belső, töltésű fóliaréteget zárja magába.
-A felvett felület területű palástján mindenütt normális irányú, kifelé mutató térerősség mérhető.
-A többi záró felületen a térerősségnek nincs felületre merőleges komponense.
Ezek alapján a Gauss törvény:
Az első fóliaréteg töltése tehát:
A második, negatív töltésű fóliarétegen található {} töltést az 4. ábra szerinti Gauss-felület felvételével határozzuk meg.
Megállapítható, hogy:
-Az új felület a már ismert és a még ismeretlen töltést zárja magába.
-A paláston mindenütt normális irányú, befelé mutató térerősség mérhető.
-A többi záró felületen a térerősségnek nincs felületre merőleges komponense.
Ezek alapján a Gauss törvény:
A második fóliaréteg töltése tehát:
A harmadik fóliaréteg is magába záró felületre felírt Gauss törvény a fentiek alapján:
A harmadik fóliaréteg töltése:
Ha a Gauss tételt sorban alkalmazzuk olyan zárt felületekre, amelyek rendre egyel több fóliaréteget zárnak magukba az előzőleg felvett felülethez képest, beláthatjuk, hogy a töltés az egyes fóliarétegeken az 5. ábra szerint alakul.
A legkülső felületen szükségszerűen töltésnek kell lenni, hogy a rendszer kifelé semlegesnek mutatkozzék.
Egy fegyverzeten található össztöltés db tekeredés esetén:
Ahol a fólia területe.
A lemezek közti feszültség , tehát a kapacitás:
A síkkondenzátor kapacitása -szeresére nőtt a feltekerés hatására. Ha igen nagy, , tehát a kapacitás kétszeresére nő.