„Mechanika - Hokikorong és rúd ütközése” változatai közötti eltérés
A Fizipedia wikiből
(→Feladat) |
(→Feladat) |
||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex># (*3.3.24.) Egy pontszerűnek tekinthető $v_0$ sebességű $2m$ tömegű hokikorong tökéletesen rugalmatlanul ütközik egy fele akkora tömegű, $l$ hosszúságú rúd végével (jégen). Írja le a rendszer mozgását ütközés után! [[Kép:3.3.24..svg|none|255px]] | + | </noinclude><wlatex># (*3.3.24. alapján) Egy pontszerűnek tekinthető $v_0$ sebességű $2m$ tömegű hokikorong tökéletesen rugalmatlanul ütközik egy fele akkora tömegű, $l$ hosszúságú rúd végével (jégen). Az ütközés után a testek összetapadnak. Írja le a rendszer mozgását ütközés után! [[Kép:3.3.24..svg|none|255px]] |
#: a) Hol lesz az ütközés után a rendszer tömegközéppontja (a rúd hossza mentén)? | #: a) Hol lesz az ütközés után a rendszer tömegközéppontja (a rúd hossza mentén)? | ||
#: b) Mekkora lesz a tömegközéppont sebessége? | #: b) Mekkora lesz a tömegközéppont sebessége? |
A lap jelenlegi, 2014. november 5., 07:14-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika gyakorlat 1. |
Gyakorlatok listája: |
Mechanika - Merev testek II. |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- (*3.3.24. alapján) Egy pontszerűnek tekinthető sebességű tömegű hokikorong tökéletesen rugalmatlanul ütközik egy fele akkora tömegű, hosszúságú rúd végével (jégen). Az ütközés után a testek összetapadnak. Írja le a rendszer mozgását ütközés után!
- a) Hol lesz az ütközés után a rendszer tömegközéppontja (a rúd hossza mentén)?
- b) Mekkora lesz a tömegközéppont sebessége?
- c) Mekkora az e pontra vonatkoztatott tehetetlenségi nyomaték?
- d) Milyen szögsebességgel forog a rendszer ütközés után?
Megoldás
- a) A tömegközéppont a rúdnak attól a végétől, ahol a koronggal összekapcsolódik, az egyenlet alapján távolságra, a rúd tömegközéppontjától pedig távolságra lesz.
- b) A rugalmatlan ütközés egyenlete a tömegközéppontra , ebből
- c) A rúd tehetetlenségi nyomatéka a közös tömegközéppontra és ehhez jön még a korong nyomatéka, így a teljes rendszer tehetetlenségi nyomatéka
- d) Az impulzusmomentum megmaradásából (a tömegközéppontra felírva) a szögsebesség