„Elektrosztatika példák - Hengerfelületre feltekert síkkondenzátor” változatai közötti eltérés
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika gyakorlat 2. Kategória:Szerkesztő:Beleznai Kategória:Elektrosztatika {{Kísérleti fizika gyakorlat | tárgynév …”) |
|||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex>#Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, | + | </noinclude><wlatex>#Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, $r$ sugarú hengerre úgy, hogy annak palástján a fegyverzetek $N$ réteget alkotnak az 1. ábra szerint. Mennyivel változik az így kapott kondenzátor kapacitása az eredeti állapotához képest? Tételezzük fel, hogy a feltekert fegyverzetek sok réteget alkotnak ($N\gg 1$), és a rétegrendszer teljes vastagsága lényegesen kisebb, mint a henger sugara ($r\gg 2Nd$). </wlatex><includeonly><wlatex>{{Útmutatás|content=A szuperpozíció elve miatt a gömb teljes potenciálja összege két félgömb potenciáljának}}{{Végeredmény|content=$$C = \frac{4\pi\epsilon_0\alpha}{R-r}$$}} |
</wlatex></includeonly><noinclude> | </wlatex></includeonly><noinclude> | ||
== Megoldás == | == Megoldás == |
A lap 2013. június 27., 14:37-kori változata
Feladat
- Adott egy síkkondenzátor, melynek fegyverzetei egymástól \textit{d} távolságra helyezkednek el. A kondenzátort feltekerjük egy vastag, sugarú hengerre úgy, hogy annak palástján a fegyverzetek réteget alkotnak az 1. ábra szerint. Mennyivel változik az így kapott kondenzátor kapacitása az eredeti állapotához képest? Tételezzük fel, hogy a feltekert fegyverzetek sok réteget alkotnak (), és a rétegrendszer teljes vastagsága lényegesen kisebb, mint a henger sugara ().
Megoldás
Ha , akkor a fóliák közti térerősség rendre {, , , ...} (2. ábra) ahol a fóliák között mérhető potenciálkülönbség.
2. ábra
Hogy megállapítsuk a legbelső, pozitív töltésű fóliarétegen található töltés mennyiségét, felvesszük a 3. ábra szerinti felületet, és alkalmazzuk rá a Gauss törvényt.
3. ábra
Belátható, hogy: -A felvett felület csak a belső, töltésű fóliaréteget zárja magába. -A felvett felület területű palástján mindenütt normális irányú, kifelé mutató térerősség mérhető. -A többi záró felületen a térerősségnek nincs felületre merőleges komponense. Ezek alapján a Gauss törvény:
Az első fóliaréteg töltése tehát:
A második, negatív töltésű fóliarétegen található {} töltést az 4. ábra szerinti Gauss-felület felvételével határozzuk meg.
4. ábra
Megállapítható, hogy: -Az új felület a már ismert és a még ismeretlen töltést zárja magába. -A paláston mindenütt normális irányú, befelé mutató térerősség mérhető. -A többi záró felületen a térerősségnek nincs felületre merőleges komponense. Ezek alapján a Gauss törvény:
A második fóliaréteg töltése tehát:
A harmadik fóliaréteg is magába záró felületre felírt Gauss törvény a fentiek alapján:
A harmadik fóliaréteg töltése:
Ha a Gauss tételt sorban alkalmazzuk olyan zárt felületekre, amelyek rendre egyel több fóliaréteget zárnak magukba az előzőleg felvett felülethez képest, beláthatjuk, hogy a töltés az egyes fóliarétegeken az 5. ábra szerint alakul.
5. ábra
A legkülső felületen szükségszerűen töltésnek kell lenni, hogy a rendszer kifelé semlegesnek mutatkozzék.
Egy fegyverzeten található össztöltés db tekeredés esetén:
Ahol a fólia területe.
A lemezek közti feszültség , tehát a kapacitás:
A síkkondenzátor kapacitása -szeresére nőtt a feltekerés hatására. Ha igen nagy, , tehát a kapacitás kétszeresére nő.