Mechanika - Korongon mozgatott tömegpont

A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Gombkoto (vitalap | szerkesztései) 2013. november 13., 15:33-kor történt szerkesztése után volt.

Navigáció Pt·1·2·3
Kísérleti fizika gyakorlat 1.
Gyakorlatok listája:
  1. Deriválás
  2. Integrálás
  3. Mozgástan
  4. Erőtan I.
  5. Erőtan II.
  6. Munka, energia
  7. Pontrendszerek
  8. Merev testek I.
  9. Merev testek II.
  10. Rugalmasság, folyadékok
  11. Rezgések I.
  12. Rezgések II.
  13. Hullámok
Mechanika - Merev testek II.
Feladatok listája:
  1. Korongon mozgatott tömegpont
  2. Lelógatott korong
  3. Lelógatott korong tárcsával és tömeggel
  4. Lépcsős csiga
  5. Tömeg rugón súlyos csigával
  6. Korong vízszintes talajon húzva
  7. Henger lejtőn
  8. Három test lejtőn
  9. Forgó henger lejtőn húzva
  10. Hokikorong és rúd ütközése
  11. Hokikorong és rúd ütközése II
  12. Felbillenés lejtőn
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. *3.3.5. \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű, \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú, függőleges tengely körül súrlódás nélkül forgó korong kerületén \setbox0\hbox{$m_1$}% \message{//depth:\the\dp0//}% \box0% tömegű pontszerű test van rögzítve. A rendszer \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forog. Mekkora munka árán lehet az \setbox0\hbox{$m_1$}% \message{//depth:\the\dp0//}% \box0% tömegpontot a forgástengelyhez hozni? (A tömegpontot pl. súrlódásmentes csatornában húzzuk a centrum felé.)

Megoldás

Mivel a tömegpontot sugárirányú erővel húzzuk a tengelyhez, arra vonatkoztatva nincs forgatónyomatéka, viszont munkavégzése van, így a rendszer összes perdülete nem, csak a mozgási energiája változik meg, ami épp a keresett munkavégzés. A kezdeti és a végállapotbeli együttes tehetetlenségi nyomatékot \setbox0\hbox{$\theta_1+\theta_2$}% \message{//depth:\the\dp0//}% \box0%-vel és \setbox0\hbox{$\theta_1$}% \message{//depth:\the\dp0//}% \box0%-el jelölve a munkavégzés
\[W=\frac12\omega^2\frac{\theta_2^2+\theta_1 \theta_2}{\theta_1}=\frac12\omega^2m_1R^2\left(\frac{2m_1}m+1\right)\]