Termodinamika példák - Entrópiaváltozás izobár táguláskor

A Fizipedia wikiből
Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Entrópia, II. főtétel
Feladatok listája:
  1. Izoterm tágulás
  2. Izobár táguláskor
  3. S(T,V), adiabata
  4. Id. g. entrópiája
  5. Forralás
  6. Hőcsere
  7. Carnot-körfolyamat
  8. Keveredési entrópia
    Gibbs-paradoxon
  9. Kaloriméterben
  10. Entrópiaváltozások
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladat

  1. Mennyivel változik meg \setbox0\hbox{$m=1\,\mathrm{g}$}% \message{//depth:\the\dp0//}% \box0% nitrogéngáz entrópiája, ha állandó nyomáson \setbox0\hbox{$V_1=1\,\mathrm{l}$}% \message{//depth:\the\dp0//}% \box0% térfogatról \setbox0\hbox{$V_2=5\,\mathrm{l}$}% \message{//depth:\the\dp0//}% \box0% térfogatra expandáltatjuk.

Megoldás

Az entrópiaváltozás definíciója

\[ \mathrm{d}S = \frac{\delta Q}{T}, \]

amibe helyettesítsük be a közölt hő első főtételből kifejezett

\[ \delta Q = \mathrm{d}U+p\,\mathrm{d}V \]

alakját, ahol \setbox0\hbox{$ \mathrm{d}U=n C_V\,\mathrm{d}T $}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$ p=\frac{nRT}{V}$}% \message{//depth:\the\dp0//}% \box0%:

\[ \mathrm{d}S= n C_V \frac{\mathrm{d}T}{T} + nR \frac{\mathrm{d}V}{V}. \]

Kiintegrálva az egyenletet \setbox0\hbox{$1$}% \message{//depth:\the\dp0//}% \box0% kezdeti- és \setbox0\hbox{$2$}% \message{//depth:\the\dp0//}% \box0% végállapot között:

\[ S_2 - S_1 = n C_V \ln\frac{T_2}{T_1} + nR \ln\frac{V_2}{V_1}, \]

ahol most izotermikusan \setbox0\hbox{$p_2=p_1=p$}% \message{//depth:\the\dp0//}% \box0% ezért \setbox0\hbox{$T_i=\frac{p}{nR}{V_i}$}% \message{//depth:\the\dp0//}% \box0% (\setbox0\hbox{$i=1,2$}% \message{//depth:\the\dp0//}% \box0%):

\[ \Delta S = n C_p \ln \frac{V_2}{V_1}, \]

ahol \setbox0\hbox{$n=\frac{m}{\mu_\mathrm{N_2}}$}% \message{//depth:\the\dp0//}% \box0%. A nitrogén kétatomos közel ideális gáz (\setbox0\hbox{$C_p=\frac{f+2}{2}R=\frac{7}{2}$}% \message{//depth:\the\dp0//}% \box0%), móltömege \setbox0\hbox{$\mu_\mathrm{N_2}=14{,}01\,\mathrm{\frac{g}{mol}}$}% \message{//depth:\the\dp0//}% \box0%, amikkel \setbox0\hbox{$\Delta S = 3{,}34\,\mathrm{\frac{J}{K}}$}% \message{//depth:\the\dp0//}% \box0%.