„Magnetosztatika példák - Tranziens jelenség LR körben” változatai közötti eltérés
A Fizipedia wikiből
(Új oldal, tartalma: „<noinclude> Kategória:Kísérleti fizika gyakorlat 2. Kategória:Szerkesztő:Beleznai Kategória:Magnetosztatika {{Kísérleti fizika gyakorlat | tárgynév …”) |
(→Feladat) |
||
8. sor: | 8. sor: | ||
}} | }} | ||
== Feladat == | == Feladat == | ||
− | </noinclude><wlatex>#Egy $L$ induktivitású és $R$ ellenállású tekercset egy $U$ elektromotoros erejű telephez kapcsolunk.Mennyi idő alatt éri el az áram az állandósult értékének az $50\%$-át? </wlatex><includeonly><wlatex>{{Végeredmény|content=$$t = -\frac{L}{R}\ln\left(0.5\right)$$}} | + | </noinclude><wlatex>#Egy $L$ induktivitású és $R$ ellenállású tekercset egy $U$ elektromotoros erejű telephez kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének az $50\%$-át? </wlatex><includeonly><wlatex>{{Végeredmény|content=$$t = -\frac{L}{R}\ln\left(0.5\right)$$}} |
</wlatex></includeonly><noinclude> | </wlatex></includeonly><noinclude> | ||
+ | |||
== Megoldás == | == Megoldás == | ||
<wlatex> | <wlatex> |
A lap 2013. szeptember 15., 18:20-kori változata
Feladat
- Egy
induktivitású és
ellenállású tekercset egy
elektromotoros erejű telephez kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének az
-át?
Megoldás
A valós tekercset helyettesíthetjük egy sorba kapcsolt ideális ellenállással és tekercsel. Ekkor ha felírjuk a hurok-törvényt erre az áramkörre, akkor a következő differenciál egyenletet kapjuk:
![\[U = RI + L\dot{I}\]](/images/math/6/1/f/61f65662333a98f63038ead1853d1a96.png)
a kezdetifeltétel pedig a következő:
![\[I(t = 0) = 0\]](/images/math/c/b/1/cb1ecae85437c58916b7dfcc0429e41d.png)
Ez egy lineáris elsőrendű differenciál egyenlet, amelyet a változók szétválasztásával oldhatunk meg.
![\[\int_0^I\frac{d\tilde{I}}{\frac{U}{L}-\frac{R}{L}\tilde{I}} = \int_0^t d\tilde{t}\]](/images/math/e/f/7/ef743c09c9342a76af67ea085cb040ed.png)
Ebből a differenciál egyenlet megoldása:
![\[I\left(t\right) = \frac{U}{R}\left(1-e^{-\frac{R}{L}t}\right)\]](/images/math/1/4/f/14f2ab223ef700e0d8284bbe19bb7d04.png)
Ebből látszik, hogy az áram maximális értéke: , ami érthető, hiszen a stacionárius állapot beállta után a tekercs jelenléte már nem számít. Ha ki akarjuk számolni, hogy mikor éri el az áram a maximális értékének
-át, akkor a következő egyenletet kell megoldanunk:
![\[1-e^{-\frac{R}{L}t} = 0.5\]](/images/math/c/2/3/c23aa7d77a294c435bfa47d799f0ff15.png)
Aminek megoldása:
![\[t = -\frac{L}{R}\ln\left(0.5\right)\]](/images/math/4/8/1/481d84668ebc507feb6a27b633dd9ffc.png)