Magnetosztatika példák - Légrésben és a vasmagban tárolt energia
A Fizipedia wikiből
A lap korábbi változatát látod, amilyen Beleznai (vitalap | szerkesztései) 2013. szeptember 15., 17:59-kor történt szerkesztése után volt.
Feladat
- Egy középsugarú, keresztmetszetű vasgyűrűre menetet tekercselnek. A gyűrűn széles légrést alakítanak ki. A használatos gerjesztő áramoknál a vas relatív permeabilitása . Határozzuk meg a légrésben és a vasmagban tárolt energia arányát! Az energiából mekkora öninduktivitás számolható?
Megoldás
Írjuk fel az Ampére-féle gerjesztési törvényt egy, a toroid belsejében elhelyezkedő körre, melynek tengelye a toroid forgástengelyével egybe esik:
A mágneses tér az egyes közegekben állandó nagyságú, érintő irányú.
Mivel a mágneses indukció mindkét közegben egyforma, ezért:
Ebből a mágneses indukció mindkét közegben:
A mágneses térerősség a két közegben:
A vasmagban és a légtésben tárolt energiát úgy határozhatjuk meg, ha kiszámoljuk mindkét térrészben az energiasűrűséget (), és azt megszorozzuk térrész térfogatával.Ezzel a légrésben tárolt energia:
A vasmagban pedig:
Ebből a légrésben és a vasmagban tárolt enerigia aránya:
Mivel a tekercsre igaz hogy:
Ezért az energiából a következőképpen számolhatjuk ki az öninduktivitást: