„Magnetosztatika példák - Egyenes vezető mágneses tere” változatai közötti eltérés
61. sor: | 61. sor: | ||
$$B=\dfrac{\mu_0 I}{4 \pi d} (1-(-1))=\dfrac{\mu_0 I}{2 \pi d}$$ | $$B=\dfrac{\mu_0 I}{4 \pi d} (1-(-1))=\dfrac{\mu_0 I}{2 \pi d}$$ | ||
− | Az eredmény megnyugtató összhangban van a végtelen egyenes vezető Amper-féle gerjesztési törvénnyel kiszámolt terével | + | Az eredmény megnyugtató összhangban van a végtelen egyenes vezető Amper-féle gerjesztési törvénnyel kiszámolt terével: [[Magnetosztatika példák - Egyenes vezető mágneses tere 2|Egyenes vezető mágneses tere 2]] |
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. július 14., 10:06-kori változata
Feladat
- Határozzuk meg egy áram által átjárt véges hosszúságú egyenes vezető mágneses terét a vezetőtől távolságra található az pontban. A vezető szakasz egyik vége pontból , míg a másik vége szög alatt látszódik az -ból a vezetőre állított merőlegeshez képest.
Megoldás
a.) A mágneses tér meghatározható, ha a Biot-Savart törvényt kiintegráljuk a vezető teljes hossza mentén:
Ahol az áramjárta vezető elemi darabja, pedig az elemi vezetődarabtól a tér vizsgált pontjába mutató vektor. A tér vizsgált pontját nevezzük ki a koordináta-rendszer origójának (). Ettől távolságra, az tengellyel párhuzamosan helyezkedik el az áramjárta vezető. Parametrizáljuk a vezető pontjait a vezető adott pontjából az origóba húzott sugár tengellyel bezárt szögével az ábra szerint. 1.ábra
Fejezzünk ki a Biot-Savart integrál változóit függvényében!
Az és pontok közti infinitezimális vezetőszakasz az pontból szög alatt látszik. Az szakaszon kijelölünk egy pontot úgy, hogy . Belátható, hogy az szakasz hossza közelítőleg megegyezik egy szög alatt látszó sugarú ívelemmel:
Mivel és merőleges szárú szögek, ezért . Ezek alapján:
A Biot-Savart törvényben szereplő vektorszorzat a vezető minden eleme esetén az ábra síkjára merőleges, befelé mutató mágneses indukció járulékot ad. Emiatt a vektorszorzatot az alábbiak szerint egyszerűsíthetjük:
Az ábra alapján a szinusz argumentumában szereplő szögről beláthatjuk, hogy:
Tehát:
A Biot-Savart integrál tehát tovább egyszerűsödik:
A véges hosszúságú áramjárta vezető mágneses terének nagysága tehát:
Iránya pedig az ábra síkjára merőlegesen kifelé mutat.
Megjegyzés
Az eredményt érdemes megjegyezni, hiszen a későbbiekben gyakran találkozunk olyan áramjárta vezető geometriákkal, melyek véges egyenes szakaszokból tevődnek össze. Külön figyelmet érdemel a végtelen vezetőre vonatkozó határeset, amikor és . Ilyenkor a tér:
Az eredmény megnyugtató összhangban van a végtelen egyenes vezető Amper-féle gerjesztési törvénnyel kiszámolt terével: Egyenes vezető mágneses tere 2