„Termodinamika - Kinetikus gázelmélet, transzportfolyamatok” változatai közötti eltérés
A Fizipedia wikiből
(Átolvasva) |
|||
15. sor: | 15. sor: | ||
# Fejezze ki az egyatomos ideális gáz nyomását a gáz $U$ belső energiájával és $V$ térfogatával! {{Végeredmény|content=$$p=\frac{2U}{3V}$$}} | # Fejezze ki az egyatomos ideális gáz nyomását a gáz $U$ belső energiájával és $V$ térfogatával! {{Végeredmény|content=$$p=\frac{2U}{3V}$$}} | ||
# ''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. | # ''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. | ||
− | #* a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! | + | #* a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! {{Végeredmény|content=$$x=\frac{\omega R^2}{v}$$}} |
− | #* b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok. | + | #* b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? {{Útmutatás|content= Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az $x\sim 1/v$ összefüggést.}} {{Végeredmény|content=$$v_m=5v_0/2,$$ ahol $v_0$ a legvalószínűbb sebesség.}} |
− | # Az $F(v)$ sebességeloszlási függvényből a $w=mv^2/2$ összefüggés felhasználásával vezessük le az $f(w)$ energia-eloszlási függvényt, ahol $f(w)$ azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik $w$ és $w+\mathrm{d}w$ közötti mozgási energiával! Mekkora a legvalószínűbb $w_0$ energia és mennyi az átlagos kinetikus energia? | + | # Az $F(v)$ sebességeloszlási függvényből a $w=mv^2/2$ összefüggés felhasználásával vezessük le az $f(w)$ energia-eloszlási függvényt, ahol $f(w)$ azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik $w$ és $w+\mathrm{d}w$ közötti mozgási energiával! Mekkora a legvalószínűbb $w_0$ energia és mennyi az átlagos kinetikus energia? {{Végeredmény|content=$$w_0=\frac12kT,\qquad \langle w\rangle=\frac32kT$$}} |
− | # Legfeljebb mekkora lehet az $1\,\mathrm{l}$ térfogatú, gömb alakú edényben lévő $300\,\mathrm{K}$-es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője $2\cdot10^{-10}\,\mathrm{m}$. {{Végeredmény|content=$$p<0, | + | # Legfeljebb mekkora lehet az $1\,\mathrm{l}$ térfogatú, gömb alakú edényben lévő $300\,\mathrm{K}$-es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője $2\cdot10^{-10}\,\mathrm{m}$. {{Végeredmény|content=$$p<0,155\,\mathrm{Pa}$$}} |
# Hogyan változik az ideális gáz $D$ diffúziós állandója és $\eta$ belső súrlódási együtthatója, ha a gáz térfogata $n$-szersére nő | # Hogyan változik az ideális gáz $D$ diffúziós állandója és $\eta$ belső súrlódási együtthatója, ha a gáz térfogata $n$-szersére nő | ||
#* a) állandó hőmérsékleten, {{Végeredmény|content=$D$ $n$-szeres, $\eta$ változatlan.}} | #* a) állandó hőmérsékleten, {{Végeredmény|content=$D$ $n$-szeres, $\eta$ változatlan.}} | ||
#* b) állandó nyomáson? {{Végeredmény|content=$D$ $n^{3/2}$-szeres, $\eta$ $n^{1/2}$-szeres.}} | #* b) állandó nyomáson? {{Végeredmény|content=$D$ $n^{3/2}$-szeres, $\eta$ $n^{1/2}$-szeres.}} | ||
− | # $V$ térfogatú, vékonyfalú tartályban ideális gáz | + | # $V$ térfogatú, vékonyfalú tartályban ideális gáz van, az edényt légüres tér veszi körül. |
− | #* a) Hogyan változik az idő függvényében az edényben | + | #* a) Hogyan változik az idő függvényében az edényben lévő gáz $n$ részecskeszáma, ha a tartály falá n igen kicsi, $A$ területű lyuk van? {{Végeredmény|content=$$n(t)=n_0\exp\{-t/\tau\},$$ ahol $n_0$ a kezdeti részecskeszám-sűrűség, $\tau=\frac{4V}{A\langle v\rangle}$.}} |
− | #* b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken! Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának | + | #* b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken! Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának időegység alatt nekiütköző molekulák szána $\frac{1}{4}nA\langle v\rangle$ ($\langle v\rangle$ a molekulák átlagsebességer). A hőmérséklet mindvégig $T$. {{Végeredmény|content=$$\tau_{1/2}=\tau \ln 2$$}} {{Megoldás|content=rövid megoldás kerülhet ide, hosszabb külön oldalon lesz, hivatkozással.}} |
− | # Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben $p_K$ nyomású hidrogéngáz, a másikban kétszer akkora nyomású hidrogéngáz van. | + | # Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben $p_K$ nyomású hidrogéngáz, a másikban kétszer akkora nyomású hidrogéngáz van. A gázok $T$ hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos $p=3p_K/2$ egyensúlyi nyomás alakul ki! {{Útmutatás|content=Használjuk ki, hogy egyensúlyban az egyes edényekben a molkeulák térfogati sűrűsége állandó, és az összes molekulák száma a folyamatban nem változik.}} |
− | # Egy $d$ vastagságú, nagy felületű, homogén anyagréteg két ellentétes felületén a hőmérséklet állandó $T_1$ és $T_2$, az anyag hővezetési tényezője hőmérséklet - és helyfüggetlen. A hővezetés alapegyenlete segítségével mutassuk ki, hogy a rétegben a hőmérséklet lineárisan változikaz egyik felülettől mért $x$ távolsággal, és írjuk fel a $ | + | # Egy $d$ vastagságú, nagy felületű, homogén anyagréteg két ellentétes felületén a hőmérséklet állandó $T_1$ és $T_2$, az anyag hővezetési tényezője hőmérséklet- és helyfüggetlen. A hővezetés alapegyenlete segítségével mutassuk ki, hogy a rétegben a hőmérséklet lineárisan változikaz egyik felülettől mért $x$ távolsággal, és írjuk fel a $T(x)$ függvényt a megadott mennyiségekkel! {{Végeredmény|content=$$T(x)=T_1+\frac{T_2-T_1}{d}x$$}} |
− | # | + | # Mennyi idő alatt képződik $y=5\,\mathrm{cm}$ vastag jégréteg egy tó felszínén, ha a léghőmérséklet $T_\ell=-10^\circ\mathrm{C}$, a víz hőmérséklete a jégréteg alatt $T=0^\circ\mathrm{C}$? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig $0^\circ\mathrm{C}$-os. A jég olvadáshője $L_o=335\,\frac{J}{g}$, hővezetési tényezője $\lambda=2,1\cdot10^{-2}\,\frac{\mathrm{J}}{s\cdot cm\cdot ^\circ C}$, sűrűsége pedig $\rho=0,92\frac{\mathrm{g}}{\mathrm{cm^3}}$. {{Útmutatás|content= Írjuk fel egy elemi időtartam alatt keletkező elemi vastagságú jégréteg felszabadulásakor keletkező hőt, és tegyük fel, hogy ez a jégrétegen keresztül hővezetéssel távozik, majd integráljuk a kapott egyenletet.}} {{Végeredmény|content=$$y(t)=\left(\frac{2\lambda(T_0-T_1)}{\rho L_o}\right)^{1/2}t^{1/2},$$ 5 óra alatt képződik $5\,\mathrm{cm}$ vastag jégréteg.}} |
+ | # $T_0$ hőmérsékletű, igen nagy hőkapacitású folyadékba $T_1>T_0$ hőmérsékletű, $m$ tömegű és $c$ fajhőjű, abszolút jó hővezető testet helyezünk a $t=0$ pillanatban. A test lehűlése a Newton-féle lehűlési törvény szerint zajlik ($\text{hőáramsűrűség}=\alpha(T-T_0)$), az $\alpha$ hőátadási tényező ismert, a test felületének nagysága $A$. Határozzuk meg a test hőmérsékletét $t$ idő eltelte után! {{Útmutatás|content=A leadott hőt fejezzük ki egyrészt a hőkapacitással, és a hőmérsékletváltozással, másrészt a folyadékba történő hőátadással, és integráljuk a kapott egyenletet.}} {{Végeredmény|content=$$T=T_0+(T_1-T_0)\exp\{-\frac{\alpha A}{mc}t\}$$}} |
A lap 2012. szeptember 12., 11:42-kori változata
Feladatok
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája:
|
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
- Fejezze ki az egyatomos ideális gáz nyomását a gáz belső energiájával és térfogatával! Végeredmény
- Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, -es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az nyíláson át jutottak az sugarú hengerfelületre. A berendezés szögsebességgel forgott, aminek következtében a sebességű atom az pont helyett -ben csapódott le.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és ! Végeredmény
- b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? ÚtmutatásAz időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az összefüggést.Végeredményahol a legvalószínűbb sebesség.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és !
- Az sebességeloszlási függvényből a összefüggés felhasználásával vezessük le az energia-eloszlási függvényt, ahol azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik és közötti mozgási energiával! Mekkora a legvalószínűbb energia és mennyi az átlagos kinetikus energia? Végeredmény
- Legfeljebb mekkora lehet az térfogatú, gömb alakú edényben lévő -es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője . Végeredmény
- Hogyan változik az ideális gáz diffúziós állandója és belső súrlódási együtthatója, ha a gáz térfogata -szersére nő
- a) állandó hőmérsékleten, Végeredmény-szeres, változatlan.
- b) állandó nyomáson? Végeredmény-szeres, -szeres.
- a) állandó hőmérsékleten,
- térfogatú, vékonyfalú tartályban ideális gáz van, az edényt légüres tér veszi körül.
- a) Hogyan változik az idő függvényében az edényben lévő gáz részecskeszáma, ha a tartály falá n igen kicsi, területű lyuk van? Végeredményahol a kezdeti részecskeszám-sűrűség, .
- b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken! Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának időegység alatt nekiütköző molekulák szána ( a molekulák átlagsebességer). A hőmérséklet mindvégig . VégeredményMegoldásrövid megoldás kerülhet ide, hosszabb külön oldalon lesz, hivatkozással.
[[|Megoldás]]
- a) Hogyan változik az idő függvényében az edényben lévő gáz részecskeszáma, ha a tartály falá n igen kicsi, területű lyuk van?
- Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben nyomású hidrogéngáz, a másikban kétszer akkora nyomású hidrogéngáz van. A gázok hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos egyensúlyi nyomás alakul ki! ÚtmutatásHasználjuk ki, hogy egyensúlyban az egyes edényekben a molkeulák térfogati sűrűsége állandó, és az összes molekulák száma a folyamatban nem változik.
- Egy vastagságú, nagy felületű, homogén anyagréteg két ellentétes felületén a hőmérséklet állandó és , az anyag hővezetési tényezője hőmérséklet- és helyfüggetlen. A hővezetés alapegyenlete segítségével mutassuk ki, hogy a rétegben a hőmérséklet lineárisan változikaz egyik felülettől mért távolsággal, és írjuk fel a függvényt a megadott mennyiségekkel! Végeredmény
- Mennyi idő alatt képződik vastag jégréteg egy tó felszínén, ha a léghőmérséklet , a víz hőmérséklete a jégréteg alatt ? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig -os. A jég olvadáshője , hővezetési tényezője , sűrűsége pedig . ÚtmutatásÍrjuk fel egy elemi időtartam alatt keletkező elemi vastagságú jégréteg felszabadulásakor keletkező hőt, és tegyük fel, hogy ez a jégrétegen keresztül hővezetéssel távozik, majd integráljuk a kapott egyenletet.Végeredmény5 óra alatt képződik vastag jégréteg.
- hőmérsékletű, igen nagy hőkapacitású folyadékba hőmérsékletű, tömegű és fajhőjű, abszolút jó hővezető testet helyezünk a pillanatban. A test lehűlése a Newton-féle lehűlési törvény szerint zajlik (), az hőátadási tényező ismert, a test felületének nagysága . Határozzuk meg a test hőmérsékletét idő eltelte után! ÚtmutatásA leadott hőt fejezzük ki egyrészt a hőkapacitással, és a hőmérsékletváltozással, másrészt a folyadékba történő hőátadással, és integráljuk a kapott egyenletet.Végeredmény