„Termodinamika példák - Stern-kísérlet” változatai közötti eltérés
14. sor: | 14. sor: | ||
<wlatex> | <wlatex> | ||
+ | == Feladat == | ||
''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. | ''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. | ||
* a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! | * a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! | ||
− | |||
− | |||
− | |||
* b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? Útmutatás: Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az $x\sim 1/v$ összefüggést. | * b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? Útmutatás: Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az $x\sim 1/v$ összefüggést. | ||
− | A Maxwell-féle sebességeloszlás $$F(v)=A\left(\frac{v}{v_0}\right)^2\exp{\{-\left(\frac{v}{v_0}\right)^2\}}.$$ | + | == Megoldás == |
+ | |||
+ | a) Az atomok trepülési ideje $R/v$, a berendezés kerületi sebessége $\omega R$, ezzel az $AB$ ív hossza | ||
+ | $$x=\frac{\omega R^2}{v}.$$ | ||
+ | |||
+ | b) A Maxwell-féle sebességeloszlás $$F(v)=A\left(\frac{v}{v_0}\right)^2\exp{\{-\left(\frac{v}{v_0}\right)^2\}}.$$ | ||
Az eloszlásfüggvény matematikai konstrukció, a gázmolekulák $[v,v+\mathrm{d}v)$ sebességintervallumba eső hányadát $F(v)\mathrm{d}v$ adja, a feladatmegoldás során ezzel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az $[x,\mathrm{d}x)$ intervallumba érkező ezüstatomok $g(x)\mathrm{d}x$ száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel: | Az eloszlásfüggvény matematikai konstrukció, a gázmolekulák $[v,v+\mathrm{d}v)$ sebességintervallumba eső hányadát $F(v)\mathrm{d}v$ adja, a feladatmegoldás során ezzel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az $[x,\mathrm{d}x)$ intervallumba érkező ezüstatomok $g(x)\mathrm{d}x$ száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel: | ||
$$J_v\mathrm{d}v=g(x)\mathrm{d}x$$ | $$J_v\mathrm{d}v=g(x)\mathrm{d}x$$ |
A lap 2012. szeptember 12., 16:52-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, -es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az nyíláson át jutottak az sugarú hengerfelületre. A berendezés szögsebességgel forgott, aminek következtében a sebességű atom az pont helyett -ben csapódott le.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és !
- b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? Útmutatás: Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az összefüggést.
Megoldás
a) Az atomok trepülési ideje , a berendezés kerületi sebessége , ezzel az ív hossza
b) A Maxwell-féle sebességeloszlásAz eloszlásfüggvény matematikai konstrukció, a gázmolekulák sebességintervallumba eső hányadát adja, a feladatmegoldás során ezzel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az intervallumba érkező ezüstatomok száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel:
Az ismert adatokból kifejezzül a részecskeáramsűrűséget. A sebességtartományban a részecskeszámokra illetve a részecskeszám-sűrűségre
Itt a molekula-áramsűrűség definíció szerint
Az előző feladatrészben megteremtettük az kapcsolatot, amiből a transzformációs szabály
differenciálás útján bizonyítható (az ellentétes előjelet az ellentétes bejárást jelzi: nagy sebességhez kis befutott ív tartozik).
A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, jelöléssel:
Ez zérussá módon válhat, ahonnan a legnagyobb rétegvastagság helyére és a legvalószínűbb sebességrekifejezések adódnak.