„Termodinamika példák - Stern-kísérlet” változatai közötti eltérés
1. sor: | 1. sor: | ||
+ | <noinclude> | ||
[[Kategória:Kísérleti fizika 3. gyakorlat]] | [[Kategória:Kísérleti fizika 3. gyakorlat]] | ||
[[Kategória:Szerkesztő:Stippinger]] | [[Kategória:Szerkesztő:Stippinger]] | ||
[[Kategória:Termodinamika - Kinetikus gázelmélet, transzportfolyamatok]] | [[Kategória:Termodinamika - Kinetikus gázelmélet, transzportfolyamatok]] | ||
− | |||
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika 3. gyakorlat | | tárgynév = Kísérleti fizika 3. gyakorlat | ||
11. sor: | 11. sor: | ||
| előzőpélda = Termodinamika példák - Egyatomos ideális gáz nyomása belső energiával|Egyatomos ideális gáz nyomása belső energiával | | előzőpélda = Termodinamika példák - Egyatomos ideális gáz nyomása belső energiával|Egyatomos ideális gáz nyomása belső energiával | ||
}} | }} | ||
− | |||
− | |||
− | |||
== Feladat == | == Feladat == | ||
− | ''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. | + | </noinclude><wlatex>''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le. |
− | * a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! | + | #* a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$!</wlatex><includeonly><wlatex>{{Végeredmény|content=$$x=\frac{\omega R^2}{v}$$}}</wlatex></includeonly><wlatex> |
− | + | #* b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok?</wlatex><includeonly><wlatex>{{Útmutatás|content=Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az $x\sim 1/v$ összefüggést.}} {{Végeredmény|content=$$v_m=5v_0/2,$$ ahol $v_0$ a legvalószínűbb sebesség.}}</wlatex></includeonly><noinclude> | |
− | * b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? Útmutatás | + | |
− | + | ||
== Megoldás == | == Megoldás == | ||
− | + | <wlatex>a) Az atomok trepülési ideje $R/v$, a berendezés kerületi sebessége $\omega R$, ezzel az $AB$ ív hossza | |
− | a) Az atomok trepülési ideje $R/v$, a berendezés kerületi sebessége $\omega R$, ezzel az $AB$ ív hossza | + | |
$$x=\frac{\omega R^2}{v}.$$ | $$x=\frac{\omega R^2}{v}.$$ | ||
43. sor: | 37. sor: | ||
$$x_m=\sqrt{\frac25}\frac{\omega R^2}{v_0} \qquad\text{és}\qquad v_m=\sqrt{\frac52}v_0$$ | $$x_m=\sqrt{\frac25}\frac{\omega R^2}{v_0} \qquad\text{és}\qquad v_m=\sqrt{\frac52}v_0$$ | ||
kifejezések adódnak. | kifejezések adódnak. | ||
+ | </wlatex> | ||
+ | </noinclude> |
A lap 2012. szeptember 13., 10:57-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, -es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az nyíláson át jutottak az sugarú hengerfelületre. A berendezés szögsebességgel forgott, aminek következtében a sebességű atom az pont helyett -ben csapódott le.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és !
- b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok?
Megoldás
a) Az atomok trepülési ideje , a berendezés kerületi sebessége , ezzel az ív hossza
b) A Maxwell-féle sebességeloszlásAz eloszlásfüggvény matematikai konstrukció, a gázmolekulák sebességintervallumba eső hányadát adja, a feladatmegoldás során ezzel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az intervallumba érkező ezüstatomok száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel:
Az ismert adatokból kifejezzül a részecskeáramsűrűséget. A sebességtartományban a részecskeszámokra illetve a részecskeszám-sűrűségre
Itt a molekula-áramsűrűség definíció szerint
Az előző feladatrészben megteremtettük az kapcsolatot, amiből a transzformációs szabály
differenciálás útján bizonyítható (az ellentétes előjelet az ellentétes bejárást jelzi: nagy sebességhez kis befutott ív tartozik).
A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, jelöléssel:
Ez zérussá módon válhat, ahonnan a legnagyobb rétegvastagság helyére és a legvalószínűbb sebességrekifejezések adódnak.