„Termodinamika - Kinetikus gázelmélet, transzportfolyamatok” változatai közötti eltérés

A Fizipedia wikiből
7. sor: 7. sor:
 
| következő  = Termodinamika - Állapotváltozás, I. főtétel|Állapotváltozás, I. főtétel
 
| következő  = Termodinamika - Állapotváltozás, I. főtétel|Állapotváltozás, I. főtétel
 
}}
 
}}
<wlatex>
 
 
== Feladatok ==
 
== Feladatok ==
 
+
{{:Termodinamika példák - Egyatomos ideális gáz nyomása belső energiával}}{{Megoldás|link=Termodinamika példák - Egyatomos ideális gáz nyomása belső energiával}}
# Fejezze ki az egyatomos ideális gáz nyomását a gáz $U$ belső energiájával és $V$ térfogatával! {{Végeredmény|content=$$p=\frac{2U}{3V}$$}} {{Megoldás|link=Termodinamika példák - Egyatomos ideális gáz nyomása belső energiával}}
+
{{:Termodinamika példák - Stern-kísérlet}}{{Megoldás|link=Termodinamika példák - Stern-kísérlet}}
# ''Stern'' híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, $1880\,\mathrm{K}$-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az $F$ pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az $n$ nyíláson át jutottak az $R$ sugarú hengerfelületre. A berendezés $\omega$ szögsebességgel forgott, aminek következtében a $v$ sebességű atom az $A$ pont helyett $B$-ben csapódott le.
+
{{:Termodinamika példák - Ideális gáz részecskéinek energia szerinti eloszlása}}{{Megoldás|link=Termodinamika példák - Ideális gáz részecskéinek energia szerinti eloszlása}}
#* a) Állapítsuk meg az $AB$ ív $x$ hosszát $800\,\frac{\mathrm{m}}{\mathrm{s}}$ sebességű atomok esetén, ha a fordulatszám $50\,s^{-1}$ és $R=20\,\mathrm{cm}$! {{Végeredmény|content=$$x=\frac{\omega R^2}{v}$$}}
+
{{:Termodinamika példák - Vákuum}}{{Megoldás|link=Termodinamika példák - Vákuum}}
#* b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok? {{Útmutatás|content=Az időegység alatt lecsapódó részecskék számát határozzuk meg a Maxwell-eloszlás alapján, és használjuk ki az $x\sim 1/v$ összefüggést.}} {{Végeredmény|content=$$v_m=5v_0/2,$$ ahol $v_0$ a legvalószínűbb sebesség.}} {{Megoldás|link=Termodinamika példák - Stern-kísérlet}}
+
{{:Termodinamika példák - Diffúzió és belső súrlódás}}{{Megoldás|link=Termodinamika példák - Diffúzió és belső súrlódás}}
# Az $F(v)$ sebességeloszlási függvényből a $w=mv^2/2$ összefüggés felhasználásával vezessük le az $f(w)$ energia-eloszlási függvényt, ahol $f(w)$ azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik $w$ és $w+\mathrm{d}w$ közötti mozgási energiával! Mekkora a legvalószínűbb $w_0$ energia és mennyi az átlagos kinetikus energia? {{Végeredmény|content=$$w_0=\frac12kT,\qquad \langle w\rangle=\frac32kT$$}} {{Megoldás|link=Termodinamika példák - Ideális gáz részecskéinek energia szerinti eloszlása}}
+
{{:Termodinamika példák - Gáz szökése}}{{Megoldás|link=Termodinamika példák - Gáz szökése}}
# Legfeljebb mekkora lehet az $1\,\mathrm{l}$ térfogatú, gömb alakú edényben lévő $300\,\mathrm{K}$-es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője $2\cdot10^{-10}\,\mathrm{m}$. {{Végeredmény|content=$$p<0,155\,\mathrm{Pa}$$}} {{Megoldás|link=Termodinamika példák - Vákuum}}
+
{{:Termodinamika példák - Gázcsere tartályok közt}}{{Megoldás|link=Termodinamika példák - Gázcsere tartályok közt}}
# Hogyan változik az ideális gáz $D$ diffúziós állandója és $\eta$ belső súrlódási együtthatója, ha a gáz térfogata $n$-szersére nő
+
{{:Termodinamika példák - Lineáris hőmérsékletprofil}}{{Megoldás|link=Termodinamika példák - Lineáris hőmérsékletprofil}}
#* a) állandó hőmérsékleten, {{Végeredmény|content=$D$ $n$-szeres, $\eta$ változatlan.}}
+
{{:Termodinamika példák - Jég fagyása}}{{Megoldás|link=Termodinamika példák - Jég fagyása}}
#* b) állandó nyomáson? {{Végeredmény|content=$D$ $n^{3/2}$-szeres, $\eta$ $n^{1/2}$-szeres.}} {{Megoldás|link=Termodinamika példák - Diffúzió és belső súrlódás}}
+
{{:Termodinamika példák - Hővezetés}}{{Megoldás|link=Termodinamika példák - Hővezetés}}
# $V$ térfogatú, vékonyfalú tartályban ideális gáz van, az edényt légüres tér veszi körül.
+
#* a) Hogyan változik az idő függvényében az edényben lévő gáz $n$ részecskeszáma, ha a tartály falá n igen kicsi, $A$ területű lyuk van? {{Végeredmény|content=$$n(t)=n_0\exp\{-t/\tau\},$$ ahol $n_0$ a kezdeti részecskeszám-sűrűség, $\tau=\frac{4V}{A\langle v\rangle}$.}}
+
#* b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken! Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának időegység alatt nekiütköző molekulák szána $\frac{1}{4}nA\langle v\rangle$ ($\langle v\rangle$ a molekulák átlagsebességer). A hőmérséklet mindvégig $T$. {{Végeredmény|content=$$\tau_{1/2}=\tau \ln 2$$}} {{Megoldás|link=Termodinamika példák - Gáz szökése}}
+
# Két azonos térfogatú tartály kacsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben $p_K$ nyomású hidrogéngáz, a másikban kétszer akkora nyomású hidrogéngáz van. A gázok $T$ hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos $p=3p_K/2$ egyensúlyi nyomás alakul ki! {{Útmutatás|content=Használjuk ki, hogy egyensúlyban az egyes edényekben a molkeulák térfogati sűrűsége állandó, és az összes molekulák száma a folyamatban nem változik.}} {{Megoldás|link=Termodinamika példák - Gázcsere tartályok közt}}
+
# Egy $d$ vastagságú, nagy felületű, homogén anyagréteg két ellentétes felületén a hőmérséklet állandó $T_1$ és $T_2$, az anyag hővezetési tényezője hőmérséklet- és helyfüggetlen. A hővezetés alapegyenlete segítségével mutassuk ki, hogy a rétegben a hőmérséklet lineárisan változik az egyik felülettől mért $x$ távolsággal, és írjuk fel a $T(x)$ függvényt a megadott mennyiségekkel! {{Végeredmény|content=$$T(x)=T_1+\frac{T_2-T_1}{d}x$$}} {{Megoldás|link=Termodinamika példák - Lineáris hőmérsékletprofil}}
+
# Mennyi idő alatt képződik $y=5\,\mathrm{cm}$ vastag jégréteg egy tó felszínén, ha a léghőmérséklet $T_\ell=-10^\circ\mathrm{C}$, a víz hőmérséklete a jégréteg alatt $T=0^\circ\mathrm{C}$? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig $0^\circ\mathrm{C}$-os. A jég olvadáshője $L_o=335\,\frac{J}{g}$, hővezetési tényezője $\lambda=2,1\cdot10^{-2}\,\frac{\mathrm{J}}{s\cdot cm\cdot ^\circ C}$, sűrűsége pedig $\rho=0,92\frac{\mathrm{g}}{\mathrm{cm^3}}$. {{Útmutatás|content= Írjuk fel egy elemi időtartam alatt keletkező elemi vastagságú jégréteg felszabadulásakor keletkező hőt, és tegyük fel, hogy ez a jégrétegen keresztül hővezetéssel távozik, majd integráljuk a kapott egyenletet.}} {{Végeredmény|content=$$y(t)=\left(\frac{2\lambda(T_0-T_1)}{\rho L_o}\right)^{1/2}t^{1/2},$$ 5 óra alatt képződik $5\,\mathrm{cm}$ vastag jégréteg.}} {{Megoldás|link=Termodinamika példák - Jég fagyása}}
+
# $T_0$ hőmérsékletű, igen nagy hőkapacitású folyadékba $T_1>T_0$ hőmérsékletű, $m$ tömegű és $c$ fajhőjű, abszolút jó hővezető testet helyezünk a $t=0$ pillanatban. A test lehűlése a Newton-féle lehűlési törvény szerint zajlik ($\text{hőáramsűrűség}=\alpha(T-T_0)$), az $\alpha$ hőátadási tényező ismert, a test felületének nagysága $A$. Határozzuk meg a test hőmérsékletét $t$ idő eltelte után! {{Útmutatás|content=A leadott hőt fejezzük ki egyrészt a hőkapacitással, és a hőmérsékletváltozással, másrészt a folyadékba történő hőátadással, és integráljuk a kapott egyenletet.}} {{Végeredmény|content=$$T=T_0+(T_1-T_0)\exp\{-\frac{\alpha A}{mc}t\}$$}} {{Megoldás|link=Termodinamika példák - Hővezetés}}
+

A lap 2012. szeptember 13., 11:35-kori változata

Navigáció Pt·1·2·3
Kísérleti fizika 3. gyakorlat
Gyakorlatok listája:
  1. Kinetikus gázelmélet, transzport
  2. Állapotváltozás, I. főtétel
  3. Fajhő, Körfolyamatok
  4. Entrópia, II. főtétel
  5. Homogén rendszerek
  6. Fázisátalakulások
  7. Kvantummechanikai bevezető
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok
Feladatok listája:
  1. Id. g. nyomása belső energiával
  2. Stern-kísérlet
  3. Energia szerinti eloszlás
  4. Vákuum
  5. Diffúzió és belső súrlódás
  6. Gáz szökése
  7. Gázcsere tartályok közt
  8. Gázcsere két gázzal
  9. Lineáris hőmérsékletprofil
  10. Jég fagyása
  11. Hővezetés
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064

Feladatok

  1. Fejezze ki az egyatomos ideális gáz nyomását a gáz \setbox0\hbox{$U$}% \message{//depth:\the\dp0//}% \box0% belső energiájával és \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% térfogatával!
  2. Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, \setbox0\hbox{$1880\,\mathrm{K}$}% \message{//depth:\the\dp0//}% \box0%-es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az \setbox0\hbox{$F$}% \message{//depth:\the\dp0//}% \box0% pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0% nyíláson át jutottak az \setbox0\hbox{$R$}% \message{//depth:\the\dp0//}% \box0% sugarú hengerfelületre. A berendezés \setbox0\hbox{$\omega$}% \message{//depth:\the\dp0//}% \box0% szögsebességgel forgott, aminek következtében a \setbox0\hbox{$v$}% \message{//depth:\the\dp0//}% \box0% sebességű atom az \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% pont helyett \setbox0\hbox{$B$}% \message{//depth:\the\dp0//}% \box0%-ben csapódott le.
    Stern-kísérlet.png
    • a) Állapítsuk meg az \setbox0\hbox{$AB$}% \message{//depth:\the\dp0//}% \box0% ív \setbox0\hbox{$x$}% \message{//depth:\the\dp0//}% \box0% hosszát \setbox0\hbox{$800\,\frac{\mathrm{m}}{\mathrm{s}}$}% \message{//depth:\the\dp0//}% \box0% sebességű atomok esetén, ha a fordulatszám \setbox0\hbox{$50\,\mathrm{s}^{-1}$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$R=20\,\mathrm{cm}$}% \message{//depth:\the\dp0//}% \box0%!
    • b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok?
  3. Az \setbox0\hbox{$F(v)$}% \message{//depth:\the\dp0//}% \box0% sebességeloszlási függvényből a \setbox0\hbox{$w=mv^2/2$}% \message{//depth:\the\dp0//}% \box0% összefüggés felhasználásával vezessük le az \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% energia-eloszlási függvényt, ahol \setbox0\hbox{$f(w)$}% \message{//depth:\the\dp0//}% \box0% azt mutatja meg, hogy az összes molekula hányadrésze rendelkezik \setbox0\hbox{$w$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$w+\mathrm{d}w$}% \message{//depth:\the\dp0//}% \box0% közötti mozgási energiával! Mekkora a legvalószínűbb \setbox0\hbox{$w_0$}% \message{//depth:\the\dp0//}% \box0% energia és mennyi az átlagos kinetikus energia?
  4. Legfeljebb mekkora lehet az \setbox0\hbox{$1\,\mathrm{l}$}% \message{//depth:\the\dp0//}% \box0% térfogatú, gömb alakú edényben lévő \setbox0\hbox{$300\,\mathrm{K}$}% \message{//depth:\the\dp0//}% \box0%-es hidrogéngáz nyomása, hogy az átlagos szabad úthossz nagyobb legyen az edény átmérőjénél? A hidrogénmolekula átmérője \setbox0\hbox{$2\cdot10^{-10}\,\mathrm{m}$}% \message{//depth:\the\dp0//}% \box0%.
  5. Hogyan változik az ideális gáz \setbox0\hbox{$D$}% \message{//depth:\the\dp0//}% \box0% diffúziós állandója és \setbox0\hbox{$\eta$}% \message{//depth:\the\dp0//}% \box0% belső súrlódási együtthatója, ha a gáz térfogata \setbox0\hbox{$n$}% \message{//depth:\the\dp0//}% \box0%-szersére nő
    • a) állandó hőmérsékleten,
    • b) állandó nyomáson?
  6. \setbox0\hbox{$V$}% \message{//depth:\the\dp0//}% \box0% térfogatú, vékonyfalú tartályban ideális gáz van, az edényt légüres tér veszi körül. Feltesszük, hogy a gáz kiáramlása lassú, így a gáz egyensúlyi állapotát a folyamat nem zavarja, továbbá a lyuk mérete sokkal kisebb, mint a szabad úthossz, tehát a lyuk területére is érvényes az az összefüggés, hogy az edény falának időegység alatt nekiütköző molekulák száma \setbox0\hbox{$\frac{1}{4}n_V A\langle v\rangle$}% \message{//depth:\the\dp0//}% \box0%, ahol \setbox0\hbox{$\langle v\rangle$}% \message{//depth:\the\dp0//}% \box0% a molekulák átlagsebessége. A hőmérséklet mindvégig \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0%.
    • a) Hogyan változik az idő függvényében az edényben lévő gáz \setbox0\hbox{$N$}% \message{//depth:\the\dp0//}% \box0% részecskeszáma, ha a tartály falán igen kicsi, \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0% területű lyuk van?
    • b) Határozzuk meg azt az időtartamot, amely alatt a gáz nyomása felére csökken!
  7. Két azonos térfogatú tartály kapcsolódik egymáshoz, a szabad úthosszhoz képest kisméretű nyíláson keresztül. Az egyikben \setbox0\hbox{$p_\text{kezd}$}% \message{//depth:\the\dp0//}% \box0% nyomású, a másikban kétszer akkora nyomású hidrogéngáz van. A gázok \setbox0\hbox{$T$}% \message{//depth:\the\dp0//}% \box0% hőmérséklete azonos és időben állandó. A kinetikus gázelmélet segítségével mutassuk ki, hogy a két tartályban azonos \setbox0\hbox{$p=3p_\text{kezd}/2$}% \message{//depth:\the\dp0//}% \box0% egyensúlyi nyomás alakul ki!
  8. Egy \setbox0\hbox{$d$}% \message{//depth:\the\dp0//}% \box0% vastagságú, nagy felületű, homogén anyagréteg két ellentétes felületén a hőmérséklet állandó \setbox0\hbox{$T_1$}% \message{//depth:\the\dp0//}% \box0% és \setbox0\hbox{$T_2$}% \message{//depth:\the\dp0//}% \box0%, az anyag hővezetési tényezője hőmérséklet- és helyfüggetlen. A hővezetés alapegyenlete segítségével mutassuk ki, hogy a rétegben a hőmérséklet lineárisan változik az egyik felülettől mért \setbox0\hbox{$z$}% \message{//depth:\the\dp0//}% \box0% távolsággal, és írjuk fel a \setbox0\hbox{$T(z)$}% \message{//depth:\the\dp0//}% \box0% függvényt a megadott mennyiségekkel!
  9. Mennyi idő alatt képződik \setbox0\hbox{$Z=5\,\mathrm{cm}$}% \message{//depth:\the\dp0//}% \box0% vastag jégréteg egy tó felszínén, ha a léghőmérséklet \setbox0\hbox{$T_\ell=-10\,\mathrm{^\circ C}$}% \message{//depth:\the\dp0//}% \box0%, a víz hőmérséklete a jégréteg alatt \setbox0\hbox{$T_0=0\,\mathrm{^\circ C}$}% \message{//depth:\the\dp0//}% \box0%? Tegyük fel, hogy a jégréteg felső felülete mindig azonos hőmérsékletű a levegővel, alső felülete pedig mindig \setbox0\hbox{$0\,\mathrm{^\circ C}$}% \message{//depth:\the\dp0//}% \box0%-os. A jég olvadáshője \setbox0\hbox{$L_o=335\,\mathrm{\frac{J}{g}}$}% \message{//depth:\the\dp0//}% \box0%, hővezetési tényezője \setbox0\hbox{$\lambda=2{,}1\cdot10^{-2}\,\mathrm{\frac{J}{s\cdot cm\cdot ^\circ C}}$}% \message{//depth:\the\dp0//}% \box0%, sűrűsége pedig \setbox0\hbox{$\rho=0{,}92\,\mathrm{\frac{g}{cm^3}}$}% \message{//depth:\the\dp0//}% \box0%.
  10. \setbox0\hbox{$T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletű, igen nagy hőkapacitású folyadékba \setbox0\hbox{$T_1>T_0$}% \message{//depth:\the\dp0//}% \box0% hőmérsékletű, \setbox0\hbox{$m$}% \message{//depth:\the\dp0//}% \box0% tömegű és \setbox0\hbox{$c$}% \message{//depth:\the\dp0//}% \box0% fajhőjű, abszolút jó hővezető testet helyezünk a \setbox0\hbox{$t=0$}% \message{//depth:\the\dp0//}% \box0% pillanatban. A test lehűlése a Newton-féle lehűlési törvény szerint zajlik (\setbox0\hbox{$\text{hőáramsűrűség}=\alpha(T-T_0)$}% \message{//depth:\the\dp0//}% \box0%), az \setbox0\hbox{$\alpha$}% \message{//depth:\the\dp0//}% \box0% hőátadási tényező ismert, a test felületének nagysága \setbox0\hbox{$A$}% \message{//depth:\the\dp0//}% \box0%. Határozzuk meg a test hőmérsékletét \setbox0\hbox{$t$}% \message{//depth:\the\dp0//}% \box0% idő eltelte után!