„Termodinamika példák - Stern-kísérlet” változatai közötti eltérés
2. sor: | 2. sor: | ||
[[Kategória:Kísérleti fizika 3. gyakorlat]] | [[Kategória:Kísérleti fizika 3. gyakorlat]] | ||
[[Kategória:Szerkesztő:Stippinger]] | [[Kategória:Szerkesztő:Stippinger]] | ||
− | [[Kategória:Termodinamika | + | [[Kategória:Termodinamika]] |
{{Kísérleti fizika gyakorlat | {{Kísérleti fizika gyakorlat | ||
| tárgynév = Kísérleti fizika 3. gyakorlat | | tárgynév = Kísérleti fizika 3. gyakorlat | ||
− | + | | témakör = Termodinamika - Kinetikus gázelmélet, transzportfolyamatok | |
− | + | ||
− | | témakör = Termodinamika - Kinetikus gázelmélet, transzportfolyamatok | + | |
− | + | ||
− | + | ||
− | + | ||
}} | }} | ||
== Feladat == | == Feladat == |
A lap 2012. október 10., 12:16-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, -es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az nyíláson át jutottak az sugarú hengerfelületre. A berendezés szögsebességgel forgott, aminek következtében a sebességű atom az pont helyett -ben csapódott le.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és !
- b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok?
Megoldás
a) Az atomok trepülési ideje , a berendezés kerületi sebessége , ezzel az ív hossza
b) A Maxwell-féle sebességeloszlásAz eloszlásfüggvény matematikai konstrukció, a gázmolekulák sebességintervallumba eső hányadát adja, a feladatmegoldás során ezzel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az intervallumba érkező ezüstatomok száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel:
Az ismert adatokból kifejezzül a részecskeáramsűrűséget. A sebességtartományban a részecskeszámokra illetve a részecskeszám-sűrűségre
Itt a molekula-áramsűrűség definíció szerint
Az előző feladatrészben megteremtettük az kapcsolatot, amiből a transzformációs szabály
differenciálás útján bizonyítható (az ellentétes előjelet az ellentétes bejárást jelzi: nagy sebességhez kis befutott ív tartozik).
A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, jelöléssel:
Ez zérussá módon válhat, ahonnan a legnagyobb rétegvastagság helyére és a legvalószínűbb sebességrekifejezések adódnak.