„Termodinamika példák - Stern-kísérlet” változatai közötti eltérés
a |
a (→Megoldás) |
||
16. sor: | 16. sor: | ||
$$x=\omega R \Delta t=\frac{\omega R^2}{v}.$$ | $$x=\omega R \Delta t=\frac{\omega R^2}{v}.$$ | ||
− | b) A Maxwell-féle sebességeloszlás alakja $$F(v)=A\left(\frac{v}{v_0}\right)^2\exp{\left\{-\left(\frac{v}{v_0}\right)^2\right\}},$$ ahol $v_0=\sqrt{\frac{2kT}{\mu}}$ a legvalószínűbb sebesség és $A=\frac{4}{v_0\sqrt{\pi | + | b) A Maxwell-féle sebességeloszlás alakja $$F(v)=A\left(\frac{v}{v_0}\right)^2\exp{\left\{-\left(\frac{v}{v_0}\right)^2\right\}},$$ ahol $v_0=\sqrt{\frac{2kT}{\mu}}$ a legvalószínűbb sebesség és $A=\frac{4}{v_0\sqrt{\pi}}$. |
Az eloszlásfüggvény pusztán matematikai konstrukció. A gázmolekulák $[v,v+\mathrm{d}v)$ sebességintervallumba eső hányadát $F(v)\mathrm{d}v$ adja, a feladatmegoldás során ezzel a valódi mennyiséggel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az $[x,\mathrm{d}x)$ intervallumba érkező ezüstatomok $g(x)\mathrm{d}x$ száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel: | Az eloszlásfüggvény pusztán matematikai konstrukció. A gázmolekulák $[v,v+\mathrm{d}v)$ sebességintervallumba eső hányadát $F(v)\mathrm{d}v$ adja, a feladatmegoldás során ezzel a valódi mennyiséggel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az $[x,\mathrm{d}x)$ intervallumba érkező ezüstatomok $g(x)\mathrm{d}x$ száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel: | ||
$$J_v\mathrm{d}v=g(x)\mathrm{d}x$$ | $$J_v\mathrm{d}v=g(x)\mathrm{d}x$$ | ||
31. sor: | 31. sor: | ||
A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, $a=\frac{\omega R^2}{v_0}$ jelöléssel: | A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, $a=\frac{\omega R^2}{v_0}$ jelöléssel: | ||
$$\frac{\mathrm{d}J(x)}{\mathrm{d}x}=\left.C\cdot\left[2\frac{a^2}{x^3}\frac1{x^5}-\frac5{x^6}\right]\exp\left\{-\left(\frac{a}{x}\right)^2\right\}\right|_{x=x_m}=0.$$ | $$\frac{\mathrm{d}J(x)}{\mathrm{d}x}=\left.C\cdot\left[2\frac{a^2}{x^3}\frac1{x^5}-\frac5{x^6}\right]\exp\left\{-\left(\frac{a}{x}\right)^2\right\}\right|_{x=x_m}=0.$$ | ||
− | Ez zérussá $ | + | Ez zérussá csak $2a-5x_m^2=0$ módon válhat, ahonnan a legnagyobb rétegvastagság helyére és a legvalószínűbb sebességre $$x_m^2=\frac{2a}{5}=\frac{2\omega^2R^4}{5v_0^2} \qquad\text{és}\qquad v_m=\frac{\omega R^2}{x_m}\Rightarrow v_m^2=\frac52v_0^2,$$ |
$$x_m=\sqrt{\frac25}\frac{\omega R^2}{v_0} \qquad\text{és}\qquad v_m=\sqrt{\frac52}v_0$$ | $$x_m=\sqrt{\frac25}\frac{\omega R^2}{v_0} \qquad\text{és}\qquad v_m=\sqrt{\frac52}v_0$$ | ||
kifejezések adódnak. | kifejezések adódnak. | ||
</wlatex> | </wlatex> | ||
</noinclude> | </noinclude> |
A lap 2013. február 24., 22:47-kori változata
Navigáció Pt·1·2·3 |
---|
Kísérleti fizika 3. gyakorlat |
Gyakorlatok listája: |
Termodinamika - Kinetikus gázelmélet, transzportfolyamatok |
Feladatok listája: |
© 2012-2013 BME-TTK, TÁMOP4.1.2.A/1-11/0064 |
Feladat
- Stern híres kísérletében, amellyel a Maxwell-eloszlás kísérleti igazolását adta, -es ezüstszálról távozó atomok sebességeloszlását mérte meg, az ábrán vázolt elrendezéssel. Az pontbeli tengelyen elhelyezkedő szálról távozó ezüstatomok az nyíláson át jutottak az sugarú hengerfelületre. A berendezés szögsebességgel forgott, aminek következtében a sebességű atom az pont helyett -ben csapódott le.
- a) Állapítsuk meg az ív hosszát sebességű atomok esetén, ha a fordulatszám és !
- b) Milyen sebességnél adják a legnagyobb rétegvastagságot a külső hengerfelületen lecsapódó ezüstatomok?
Megoldás
a) Az atomok repülési ideje , a berendezés kerületi sebessége , ezzel az ív hossza
b) A Maxwell-féle sebességeloszlás alakja ahol a legvalószínűbb sebesség és .Az eloszlásfüggvény pusztán matematikai konstrukció. A gázmolekulák sebességintervallumba eső hányadát adja, a feladatmegoldás során ezzel a valódi mennyiséggel kell számolnunk, mivel a átparaméterezéssel az infinitezimális intervallum hossza is változik. Az intervallumba érkező ezüstatomok száma (ami a rétegvastagsággal arányos mennyiség) megadható a részecskeáramsűrűséggel:
Az ismert adatokból kifejezzük a részecske-áramsűrűséget. A sebességtartományban a részecskeszámokra illetve a részecskeszám-sűrűségre
Itt a molekula-áramsűrűség definíció szerint
Az előző feladatrészben megteremtettük az kapcsolatot, amiből a transzformációs szabály
differenciálás útján bizonyítható (az ellentétes előjelet az ellentétes bejárást jelzi: nagy sebességhez kis befutott ív tartozik).
A legnagyobb rétegvastagsághoz ennek a függvénynek az extrémumát keressük. Konstans faktor erejéig, jelöléssel:
Ez zérussá csak módon válhat, ahonnan a legnagyobb rétegvastagság helyére és a legvalószínűbb sebességrekifejezések adódnak.